




免费预览已结束,剩余69页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节 自然数和01 1定义 自然数的序数定义 集合N的元素叫做自然数 如果的元素间有一个基本关系 后继 用 表示 并满足 1 存在一个元素 2 每一个自然数a都存在唯一个后继 3 4 设a b为两个自然数 若 b 则称a为b的生成元 注1 自然数中除1以外的任意数都有且仅有一个生成元 注2 对于N中任意元a 都有 a a 1 2自然数运算1 加法 自然数的加法是一种对应 对任何a b 有唯一确定的a b 与之对应 并且2 乘法 自然数的乘法是一种对应关系 由于它 对任何a b 有唯一确定的a b 并且 运算性质 定理1自然数的加法满足结合律和交换律 即定理2 乘法结合律 定理3 乘法交换律 定理4自然数的乘法对加法满足分配律 1 3自然数的顺序 引理1引理2对任意自然数有 1 2 3 定义使得 则称 定义 若集合A关于顺序 满足 1 任意a b A a b a b ab b c 则a c 则称集合A为有序集 注 自然数N关于上述定义的顺序 构成有序集 1 4自然数的性质 第三节从自然数系到整数环一 数系扩展原则 A是B的真子集 即AB 在新数上建立各种运算 A的元间所定义的运算关系 在B的元间也有相应的定义 且B的元间的这些关系和运算对B中的A的元来说与原定义一致 这保证老结构和新结构彼此相容 B的结构和A的结构可能有本质不同 某种运算在A中不是总能实施 在B中却总能实施 在A的具有上述三个性质所有的扩展中 在同构意义下 B是唯一最小扩展 二 整数集的定义 上述定义的集合Z在所定义加法与乘法运算下构成一个环 称为整数环 注 1 Z包含自然数N 2 环Z是包含自然数N的最小环 3 若R也是包含自然数N的最小环 则R与Z同构 三 整数集的性质 定义顺序 1 整数环是一个有序环 有序环的定义 一个环称为有序环 如果它的元素之间定义了一个顺序 满足 1 若a不为0 则a 0或者 a 0 两者恰有一个成立 2 a 0 b 0 则a b 0 ab 0 2 整数环的离散性 任意两个相邻的整数a与a 1之间不存在整数 即不存在整数b使a0必存在自然数n 使得nb a 4 整数的良序性 任何非空有上界 或下届 的整数集的子集A都含有一个最大数 最小数 第三节 有理数域 上述定义的集合Q在所定义加法与乘法运算下构成一个域 称为有理数域 注 1 Q包含整数环 2 域Q是包含整数环Z的最小域 3 若R也是包含整数环Z的最小域 则R与Q同构 有理数域的性质 定义Q中正元 Q中顺序 1 有理数域是一个有序域 2 有理数域是稠密的 即任意两个有理数a与b之间都存在有理数 即对任意a b Q a0必存在自然数n 使得nb a 4 n进有理数设n是给定的自然数 把形如称为n进有理数 记为 定理1关于Q中加 乘运算构成一个环 定理2稠密 且在Q中稠密 第四节实数系 一 不是有理数的数的发现二 有理数的局限在Q中有理数列极限不一定存在 三 实数的定义1 无穷小数说2 柯西基本列定义 康托尔 四 实数的性质定理1实数系是阿基米德有序域 定理2 稠密性 任意两个实数a与b之间都存在实数 即对任意ab R a b都存在实数c 使得a c b 定理3实数系是完备的 即R中每一个基本列都收敛 第五节复数系 一 实数的局限二 复数集的定义C a b a b R 加法运算 a b c d a c b d 乘法运算 a b c d ac bd ad bc 三 复数的性质 1 C存在复数 使得 记为i 0 1 2 复数域不是有序域 但复数集可以定义顺序使其构成有序集 第四章函数 第一节 函数概念的三种定义 函数概念的定义定义1有两个互相联系的变量 一个变量的数值可以在某一范围内任意变化 这样的变量叫做自变量 另一个变量的数值随着自变量的数值而变化 这个变量称为因变量 并且称因变量为自变量的函数 19世纪法国数学家柯西 定义2在某变化过程中 有两个变量x和y 如果对于x在某一范围内的每一个确定的值 按照某个对应关系 y都有唯一确定的值和它对应 那么就把y称为x的函数 称x为自变量 19世纪德国数学家黎曼和狄里赫勒分别给出 定义3设A B是两个集合 如果按照某种对应关系 使的A中任何一个元素在B中都有唯一的元素和它对应 这样的对应关系称为从集合A到集合B的函数 19世纪70年代德国数学家康托 定义4从集合到集合的映射称为从集合到集合的函数 简称为函数 函数概念的三种定义 函数的变量说定义一般地 设在一个变化过程中有两个变量 如果一个变量随着另一个变量的变化而变化 那么就说是自变量 是因变量 也称是的函数 这种陈述性的定义 是函数的传统定义 它建立在变量的基础上 强调了变化 而描述变化 正是函数最重要的特征 函数定义的变量说 是对函数的一个宏观的 整体的把握 第三节初等函数 一 初等函数的定义中学所学习的主要初等函数有 常量函数 幂函数 指数函数 对数函数 三角函数和反三角函数等 称为基本初等函数 定义 初等函数 由基本初等函数经过有限次的代数运算及有限次的函数复合所得到的函数叫做初等函数 初等函数的判定 应用定义如注 基本初等函数在其定义域上是连续的 初等函数在其定义域上不一定连续 但在其定义域包含的区间内是连续的 例 1 2 例 都不是初等函数 定义 初等代数函数 如果一个函数是用基本初等函数y c y x经过有限次代数运算 加 减 乘 除 乘方 开方 所得到的初等函数 则叫做初等代数函数 不是初等代数函数的初等函数叫做初等超越函数 例 二 初等函数的分类 三 初等函数的几个问题 1 有理数幂的定义 2 无理数幂的定义与运算 3 幂函数的值域 定理 如果a是不等于1的正实数 那么对任意给定的正实数N 都存在唯一的实数b 使得注 幂函数的值域为 四 初等超越函数的超越性 定义如果函数满足代数方程其中是不全为零的多项式 则称是代数函数 否则称为超越函数 定理1 指数函数是超越函数 定理2 对数函数是超越函数 定理3 无理数幂函数y 是超越函数 定理4 三角函数是超越函数 五初等函数的性质 1 奇偶性的判断 2 函数的单调性 单调性判定 4 周期性 1 定义 设f x 是定义在数集M上的函数 若存在非零常数T 0 对任意xM 有x T x TM 且f x T f x 成立 则称f x 是周期函数 T称为f x 的一个周期 注 若周期函数f x 存在最小正周期t 则f x 所有周期构成的集合为 2 周期函数最小正周期的存在性 定理1 若R上周期函数f x 不恒为常数 且f x 是连续的 则f X 必有最小正周期 3 周期函数的性质 第四节用初等变换作出函数图像 一 平移变换例作出函数的图像 二 对称变换例 三 放缩变换 例作出的图像 第五节基本初等函数的公理化定义 一 引理二 指数函数的公理化定义 对数函数的公理化定义设满足 第三章方程 第一节方程的定义方程是为了求未知数 在未知数和已知数之间建立的一种等式关系 好处在于 它揭示了方程这一数学思想方法的目标 为了求未知数 陈述了 已知数 的存在 解方程需要充分利用已知数和未知数之间的关系 方程的本质是 关系 而且是一个等式关系 一 方程的定义 形如的等式叫做方程 其中是两个解析式 且至少有一个不是常函数 定义域的交集称为方程的定义域 二 方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏有线招聘面试题及答案:媒体行业求职必 备手册
- 从金沙医院面试题及答案看医师职位的职业素质与能力要求
- 高潜力职场岗位探索:面试题及答案最简单职位筛选技巧
- 人工智能技术及应用 第2版 课件全套 程显毅 第1-7章 人工智能时代 -人工智能应用
- 铁路局招聘面试实战模拟题集:行业背景与岗位认知
- 无锡艺术学校面试模拟考试
- 超新星遗迹化学-洞察及研究
- 生物医药实验室面试题与答案参考
- 行业精英招募必 备:武馆招聘面试题及答案解析实战案例分析
- 工作主题:农艺师职业发展规划建议面试题及答案分享
- 施工合同 补充协议
- 楼梯切割安全生产合同范本
- 加油站秋季安全知识培训课件
- 2025-2026学年人教版2024八年级上册开学摸底考试英语模拟卷
- 2025至2030中国CPU市场运行现状与发展前景分析报告
- DB37-T4899-2025深远海养殖管理工作指南
- 2025年贵州中考化学试卷真题答案详解解读(精校打印)
- 2025抗战胜利80周年现代诗歌朗诵稿(16篇)
- 静脉输血流程图2
- 福建师范大学各学生组织部门简介
- 起搏器基本功能PPT
评论
0/150
提交评论