




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013新人教版数学八年级上册教材分析 本册书内容包括“全等三角形”“轴对称”“实数”“一次函数”“整式的乘除与因式分解”五章。下面分章分析如下。 第十一章“全等三角形”,本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明。 本章的教学目标是: 1、了解全等三角形的概念和性质,能够 准确地辨认全等三角形中的对应元素。 2、探索三角形全等的判定方法,能利用三角形全等进行证明,掌握 综合 法证明的格式。 3、会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。 因为学生对于证明过程的书写和推理还比较生疏,这一章书学生学起来应该比较困难,所以确定本章的重难点是要使学生理解证明的基本过程,掌握用综合法证明的格式。 本章在教学中注重探索结论,注重推理能力的培养,注重联系实际。 第十二章轴对称,本章的主要内容是从生活中的图形入手,学习轴对称及其性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。 本章的教学目标是: 1、通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。 2、了角线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角形的有关概念必、性质及判定方法。 3、能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题。在观察、操作、论证、交流的过程中,发展空间观念,激发学习图形与几何的兴趣。 轴对称的性质是本章的重点,对于一些图形的性质的证明是本章的难点。要克服这个难点,关键是要加强对问题分析的教学,帮助学生分析问题的思路。 因为对称是现实生活中广泛存在的一种现象,所发以教学中注意联系实际,注意让学生经历观察、实验、归纳、论证的过程,注重多媒体的应用。 第十三章实数,本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算。 本章的教学目标是: 1、了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根。 2、了解开方与乘方互为逆运算,会求某些数的平方根、立方根。 3、了解无理数和实数的概念,知道实数与数轴 上的点一一对应。能用有理数估计一个无理数的大致范围。 学生在前面的学习中没有接触到平方根、立方根、无理数,所以学习这些知识时应注意加强与实际 的联系,在解决实际问题的过程中,让学生认识实数的有关概念和运算,体会数的扩充过程中表现出来的概念、运算等方面的一致性各发展变化。留给学生探索交流的空间,让学生通过探究活动经历了一个由特殊到一般的认识过程 。 第十四章一次函数,本章的主要内容包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数 的概念、图象、性质以及应用举例,用函数观点再认识一元一次方程、一元一次不等式和二元一次方程组,课题学习“选择方案”。 1、结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示法,能利用图象数形结合地分析简单的函数关系。 2、理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单的实际问题。 3、通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的以观点加深对已经学习过的方程(组)及不等式内容的认识, 4、通过讨论课题学习中选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力。 函数这一章是这册书里对学生来说最难的一个内容,学生学起来特别吃力,理解起来特别难,所以在教学中要借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体现数学建模思想。重视数形结合的研究方法。注重对于基础知识和基本技能的掌握,提高基本能力。结合课题学习,提高实践意识与综合应用数学知识的能力。 第十五章整式的乘除与因式分解,本章的主要内容是整式的乘除运算、乘法公式以及因式分解。这些知识是以后学习分式和根式运算、函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。 本章的教学目标是: 1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。 2、使学生会推导乘法公式,了解公式的几何意义,能利用公式进行乘法运算。 3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算并能灵活地运用运算律与乘法公式简化运算。 4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式 分解 的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。 本章的内容与学生学过的有理数加、减、乘、除运算相似,所以学生学得较轻松,掌握得也较快。但运算性质和公式的发生和归纳过程要重视,适时渗透转化的思想方法以及注意数学知识间的内存联系,充分发挥学生的主观能动性。初中数学新课标人教版教材八年级下册总体分析与教学指导(基教课改讲座九之4)主讲人:钟炜(四川省自贡市荣县教研室主任)时间:2010年12月23日编者按:本人对“基教课改讲座”分为若干个系列,对每个系列分为若干个专题。本文初中数学新课标人教版教材八年级下册总体分析与教学指导(基教课改讲座系列九数学八年级之专题4),分为两个版块:一是人教版义务教育课程标准实验教科书数学八年级下册总体分析;二是新课标人教版教材数学八年级下册教学指导意见。致谢各位原作者和诸位读者。一、人教版义务教育课程标准实验教科书数学八年级下册总体分析原作者:人教社课程教材研究所左怀玲 日期来源:2006年6月14日人民教育出版社1.1、本书课时安排与主要内容.本书课时安排。义务教育课程标准实验教科书数学八年级下册包括5章,约需61课时,供八年级下学期使用。具体内容如下:第16章分式,约14课时。第17章反比例函数,约8课时。第18章勾股定理,约8课时。第19章四边形,约16课时。第20章数据的分析约15课时。本书主要内容。本册书的5章内容涉及数学课程标准中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容。对于“实践与综合应用”领域的内容,本册书在第19章和第20章分别安排了一个课题学习,并在每一章的最后安排了23个数学活动,通过这些课题学习和数学活动落实“实践与综合应用”的要求。这5章大体上采用相近内容相对集中的方式安排,前两章基本属于“数与代数”领域,随后的两章基本属于“空间与图形”领域,最后一章是“统计与概率”领域,这样安排有助于加强知识间的纵向联系。在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。1.2、本书内容分析.“第16章分式”。本章主要研究分式及其基本性质,分式的加、减、乘、除运算,分式方程等内容。这些内容分为三节安排。第16.1节类比着分数的概念给出了分式的概念,类比着分数的基本性质探讨了分式的基本性质,类比着分数的约分、通分介绍了分式的通分、约分等,这些内容为后面两节的学习打下理论基础。第162节讨论分式的四则运算法则,教科书从实际问题出发,首先研究了分式的乘除运算,类比着分数的乘除,探讨了分式的乘除运算法则;接下去,教科书也是从实际问题出发,采用与分数加减相类比的方法,研究了分式的加减运算,得出了运算法则,并学习分式的四则混合运算;最后,教科书结合分式的运算,研究了整数指数幂的问题,将正整数指数幂的运算性质推广到整数范围,并完善了科学记数法。本节内容是全章的重点,其中分式的混合运算也是全章的一个难点。第163节讨论分式方程的概念和解法,主要涉及可以化为一元一次方程的分式方程。教科书从实际问题出发,分析问题中的数量关系,列出分式方程,由此引出分式方程的概念,接下去研究分式方程的解法,教科书采用与学生已有经验相联系的方式,探讨了如何将分式方程转化为整式方程,从而得到分式方程的解的问题。解分式方程中要应用分式的基本性质,并且出现了必须验根的情况,这是以前学习的方程中没有遇到的问题,教科书结合具体例子,对分式方程为什么需要验根进行了解释。分式方程提供了一种解决实际问题的数学模型,它具有整式方程不可替代的特殊作用,根据实际问题列出分式方程,是本章教学中的另一个难点。“第17章反比例函数”。本章的主要内容包括反比例函数的概念、图象和性质,以及用反比例函数分析和解决实际问题等。本章是继八(上)“第11章 一次函数”后的又一章函数的内容。全章分为两节:第17.1节反比例函数,第17.2节实际问题与反比例函数,全章内容紧紧围绕着实际问题展开,实际问题是贯穿全章的一条主线。第17.1节主要研究反比例函数的概念、图象和性质。本节中,教科书首先从几个学生熟悉的实际问题出发,分析实际问题中变量间的对应关系,列出反比例函数的解析式,从而引进反比例函数的概念,使学生对反比例函数的认识经历一个由感性到理性的过程.第17.2节的内容是利用反比例函数分析、解决实际问题。本节中,教科书以例题的方式,给出了四个实际问题,这四个问题基本上是按照数量关系由简单到复杂的顺序安排的(依次是圆柱的底面积与高,做工时间与做工速度,动力是动力臂,输出功率与电阻),它们从不同的方面体现了反比例函数是解决实际问题有效的数学模型。“第18章勾股定理”。本章主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。全章分为两节,第18.1节是勾股定理,第18.2节是勾股定理的逆定理。在18.1节中,教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题1的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。通过推理证实命题1的正确性后,教科书顺势指出什么是定理,并明确命题1就是勾股定理。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题(画出长度是无理数的线段等)中的应用,使学生对勾股定理的作用有一定的认识。第18.2节是研究勾股定理的逆定理,教科书从古埃及人画直角的方法说起,给出如果一个三角形的三边满足32+42=52,那么这个三角形是直角三角形的结论,然后让学生画出一些两边的平方和等于第三边的平方的三角形,探索这些三角形的形状,可以发现画出的三角形都是直角三角形,从而猜想如果三角形的三边满足这种关系,那么这个三角形是直角三角形,这样就探索得出了勾股定理的逆定理。此时这个逆定理是以命题2的方式给出的,教科书通过对照命题1和命题2的题设、结论,给出了原命题和逆命题的概念。命题2是否正确,需要证明,教科书利用全等三角形证明了命题2,得到勾股定理的逆定理。勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这在数学和实际中有广泛应用,教科书通过两个例题,让学生学会运用这种方法解决问题。“第19章四边形”。本章主要研究一些特殊四边形的概念、性质和判定方法。对于特殊的四边形,教科书按照对边之间的平行关系把它们分成两类:两组对边分别平行的四边形平行四边形,一组对边平行、另一组对边不平行的四边形梯形。对于平行四边形,除了研究一般的平行四边形外,还研究了矩形、菱形和正方形等几种特殊的平行四边形。第19.1节主要研究一般平行四边形的概念、性质和判定。教科书从实际生活中的图形出发,抽象概括出平行四边形的概念,通过一系列的探究活动,得出平行四边形的性质和判定方法,并对所得结论进行适当的推理证明;作为判定方法的一个应用,教科书通过一个例题得出了三角形中位线定理。第19.2节主要研究矩形、菱形、正方形的概念、性质和判定,本节是在前一节的基础上,进一步研究这几种特殊的平行四边形。教科书首先研究了矩形和菱形,它们都是有一个特殊条件的平行四边形,矩形是有一个角是直角的平行四边形,菱形是有一组邻边相等的特殊的平行四边形。在此基础上,教科书研究了同时具有两个特殊条件的平行四边形,即正方形,它是有一个角是直角的特殊菱形,又是有一组邻边相等的特殊矩形。第19.3节研究梯形,梯形是与平行四边形并列的另一种特殊四边形,它有一组对边平行,另一组对边不平行,本节重点研究了一种特殊的梯形等腰梯形,探究得出等腰梯形的性质和判定方法。教科书在最后一节,即第19.4节安排了一个课题学习:重心。通过寻找几何图形的重心的活动,了解规则的几何图形的重心就是它的几何中心,体会数学与物理学科之间的联系。“第20章数据的分析”。本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义。全章分为三节。第20.1节是研究代表数据集中趋势的统计量:平均数、中位数和众数。本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用。接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等。对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义。在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征。第20.2节是研究刻画数据波动程度的统计量:极差和方差。教科书首先利用温差的例子研究了极差的统计意义。方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究。首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的。随后,又介绍了利用计算器的统计功能求方差的方法。本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题。教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”。这个“课题学习”选用了与学生生活联系密切的体质健康问题。由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。为了便于教学操作,教科书根据中学生体质健康登记表提供了一个样例。1.3、本书编写特点.加强与实际的联系,体现知识的形成和应用。密切联系实际,反映知识的来龙去脉,体现知识的形成和应用过程,是本套教科书的一个特点,也是本册书的一个主要特点。本书各章内容编写时,对于概念的引入,知识的形成等均注意从实际问题出发,体现数学来源于实际,同时又注意将所得数学结论运用于实际,通过解决实际问题,体现数学服务于实际。在“分式”一章中,对于分式概念的引入,教科书安排了几个实际问题,通过分析实际问题中的数量关系,列出分式,从而引出分式的概念,体现分式的概念是由于客观实际的需求而产生的;在讨论分式方程时,更是结合实际问题,体现分式方程是解决实际问题的数学模型。在“反比例函数”一章中,反比例函数的概念是通过几个实际问题抽象出来的,本章还专门安排了一节“实际问题与反比例函数函数”,突出了反比例函数是研究实际问题的数学模型。在“勾股定理”一章中,对于勾股定理及其逆定理的发现是结合实际生活展开的,同时也编写了这两个定理在解决实际问题中的应用。在“四边形”一章中,充分体现了四边形,尤其是平行四边形、矩形、菱形、正方形、梯形等与生活的密切联系。由于统计与现实生活的联系是非常紧密的,在“数据的分析”一章中,注意发挥典型案例的作用,对于加权平均数、中位数、众数、方差等统计量的学习,都是在分析实际案例的过程中展开的,在解决实际问题的过程中理解统计的概念和原理。本册书编写时,选择了许多富有时代气息的、典型的、学生熟悉的或感兴趣的实际问题,有些实际问题是用来创设问题背景,为概念的引出或知识的形成服务的,有些实际问题是为数学知识与方法的应用而设计的。注意揭示数学的本质。数学是研究现实世界中的数量关系和空间形式的一门科学,数学来源于丰富的物质世界,数学本身存在着严密的逻辑关系,只有深刻地揭示了数学知识的本质,理清了数学知识之间的逻辑关系,才能真正地理解数学,更好地利用数学解决问题。本书在编写的过程中,充分注意尊重数学的内在体系结构,挖掘数学知识的内在联系,揭示数学知识的本质。在“分式”一章中研究分式的概念和分式的基本性质时,教科书从分数与分式的关系入手,利用了分数与分式是具体与抽象、特殊与一般的关系(即相对于分式而言分数是具体的、特殊的基础对象),揭示了分式是把具体的分数一般化后的抽象代表。根据分数与分式的这种关系,分数的有关结论应该与分式的相关结论相对应,即两者具有一致性,这也就是我们常说的数式通性,因此就可以类比分数的概念、分数的基本性质和分数的运算法则,得出分式的概念、分式的基本性质和分式的运算法则。对于解分式方程出现增根的问题,教科书结合具体例子剖析了出现增根的原因,揭示了问题的本质。在“反比例函数”一章中,教科书在研究反比例函数的定义、图象和性质时,充分渗透了“变化与对应”基本思想,揭示了函数概念的实质就是运动变化与联系对应。在“四边形”一章中,对于平行四边形、矩形、菱形、正方形等概念,教科书注意在原有属概念基础上通过附加一些条件(种差)扩大概念的内涵、减少概念的外延来引出新的种概念,揭示了这几种特殊平行四边形之间的联系。在“数据的分析”一章,强调了加权平均数、中位数、众数、方差等统计量的意义,淡化它们的计算技巧,揭示了各统计量的本质特征,体现了统计的思想。本册书在编写时,力求反映知识之间的相互联系,渗透数学思想方法,揭示数学知识的本质。为学生创设探索和交流的机会,加大学生思维的空间。提倡学生探究式的学习方式,留给学生足够的探索交流的空间,是本册书的一个突出特点。对于本册书中重要的概念、性质、定理,教科书大多是通过设置“观察”“思考”“讨论”“探究”“归纳”等栏目,让学生通过探索活动来发现结论,经历知识的“再发现”过程,在探究活动的过程中发展创新思维能力,改变学生的学习方式。本册书中“分式”和“反比例函数”两章属于“数与代数”的内容,这些也是传统的内容,与原教材相比,这两章内容在编写时,增加了让学生通过探索活动归纳得出结论的过程,也就是增加了合情推理的成分。比如在讨论分式的基本性质时,教科书设置了一个“思考”栏目,在栏目中要求学生“类比分数的基本性质,你能想出分式有什么性质吗?”,通过学生讨论交流,归纳得出“分式的分子与分母同乘(或除以)一个不为0的整式,分式的值不变”等分式的性质,培养了学生的探究能力和创新意识。“勾股定理”“四边形”两章属于“空间与图形”领域的内容,与原教科书相比,这两章在内容处理上的一个显著变化是加强了实验几何的成分,将实验几何与论证几何有机结合。论证几何在培养人的逻辑思维能力方面起着重要作用,而实验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重大的作用。对于几何中的结论,教科书多数是先让学生通过画图、折纸、剪纸、度量或做试验等活动,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫。在勾股定理的发现中,教科书分别设置了“观察”和“探究”栏目,要求学生通过观察等腰直角三角形的性质以及通过一些计算面积等探究活动,发现勾股定理,最后又介绍了赵爽证明勾股定理的方法,这样就将实验几何与论证几何相结合。在“四边形”一章中,在探索特殊平行四边形的性质和判定时,充分利用了图形的变换,以菱形的性质为例,教科书设置一个“探究”栏目,要求学生通过对折、剪纸等活动,发现菱形的轴对称性,然后利用菱形的轴对称性,探究发现菱形四条边都相等、对角线互相垂直、对角线平分对角的性质等,并在边框中提问学生能否证明这些结论。这样也使学生经历了一个通过观察、操作、变换等活动,探究发现图形的性质,再对发现的性质进行证明的过程,使直观操作和逻辑推理有机的整合在一起。“数据的分析”是“统计与概率”的内容,对于统计内容的编写,教科书强调让学生通过统计调查活动,经历数据处理的基本过程,在收集、整理、描述和分析数据的统计活动中,学习有关统计的知识和方法,建立统计的观念。这就为学生提供了广阔的活动空间。本册教课书在“四边形”和“数据的分析”两章中分别设计了“课题学习”,各章最后都设计了23个有一定开放性和探究性的“数学活动”,这些“课题学习”和“数学活动”具有一定的综合性和实践性,为学生提供了实践活动和探索交流的机会,对引导学生探究式的学习方式有一定的促进作用。1.4、本书教学时应关注的问题.加强知识之间的相互联系,在已有经验的基础上进行教学。本册书是八年级下册,其中的5章内容与学生已经学过的内容有着千丝万缕的联系。在“分式”一章中,分式的有关概念、性质和运算法则与分数的相应内容紧密相关,分式方程最后要转化为整式方程才得以解决,在分式方程的编写思路上,同整式方程一样,也强调了分式方程是解决实际问题的数学模型的思想。“反比例函数”是本套教科书继一次函数后的又一章函数的内容,它的编写思路与一次函数有许多相似的地方,都强调了函数中的“变化与对应”的思想,都突出了函数是解决变量间存在单值对应关系的数学模型的思想。对于四边形的知识,如一些特殊四边形的概念、平行四边形、梯形的高、面积计算等等,学生在小学已经学过,在七年级下册“三角形”一章中,学生又学习了四边形的内角和等内容,因此,在“四边形”一章中,这些内容未作重复而是直接使用了。对于“勾股定理”,学生在七年级下册“第10章实数”中已经有所接触(比如学生可以利用勾股定理在数轴上做出表示无理数的点),本章又在此基础上进一步提高认识;对于刻画数据集中趋势的统计量:平均数、中位数和众数,学生在前两个学段已经学习。在“数据的分析”一章中,教科书是在学生已有经验的基础上,在研究数据集中趋势的大环境下提高对这些统计量的认识的。综上分析,教学时可以结合学生的实际情况,进行适当复习,加强知识间的相互联系与综合,在学生已有经验的基础上进行教学,使学生的学生形成正迁移。对于推理的要求。对于推理能力的培养,本套教科书按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次分阶段逐步加深地安排。本册书对于推理的要求基本处于学生在初步掌握了推理论证方法的基础上进一步巩固和提高的阶段。在“四边形”一章中,内容比较简单,证明方法也相对比较单一,但对推理证明的训练还是很重视的,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有些定理的证明,采用了探索式的证明方法,这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。在“勾股定理”一章中,对于勾股定理及其逆定理的证明方法,实际上是过计算进行证明的,这种方法与前面学过的一些判定方法不同。对于互逆命题、互逆定理的概念,教科书是结合勾股定理及其逆定理顺势给出的,目的是使学生对这些逻辑概念有一个感性的认识。学生能够将命题写成“如果那么”形式,对于提高学生的逻辑推理能力有一定的益处。因此,教学中要注意引导学生,使学生在熟悉“规范证明”格式的基础上,推理论证能力有所提高和发展。重视文化传承,关注人文教育。本套教科书力求能够成为反映科学发展和文化进步的一面镜子,既体现数学的科学性和应用性,又体现数学科学中蕴涵的文化。本册书不仅涉及数学与实际的关系,渗透建模、数形结合、转化等重要的数学思想,而且涉及勾股定理的发现等重大史实。对于勾股定理,我国古代有许多重要成就,不仅发现了勾股定理,而且使用了许多巧妙的方法进行了证明,尤其在勾股定理的应用方面,对其他国家的影响很大,这些都是我国人民对人类的重要贡献。在“勾股定理”一章,教科书结合具体内容,介绍了我国古算书周髀算经关于“勾三、股四、弦五”的记载,介绍了赵爽弦图,以及赵爽利用弦图证明勾股定理的思路。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲。正因为此,这个图案被选为2002年在北京召开的世界数学家大会的会徽。在“勾股定理”一章,也介绍了国外的有关研究成果。如勾股定理的发现是从与毕达哥拉斯有关的传说引入的,勾股定理的逆定理从古埃及人画直角的方法引入等。这些都是对学生进行文化熏陶的好素材,教学中应注意利用。二、新课标人教版教材数学八年级下册教学指导意见 原作者:武隆县教育科学研究所 肖波2.1、教学指导思想.在数学教学中,要培养学生数学学习的新观念、新思路。新观念的形成不仅包含对事物的新认识、新思路,而且包含一个不断学习的过程。为此,要求学生必须掌握学会数学的学习方式,只有不断学习,获取新知识,更新观念,才能形成新的数学认识。在八年级数学的教学中概念的演化、推理的要求、思维的全面性、深刻性、严密性、创造性方面都提出了比七年级更高的要求,因此要在教学中对进一步培养学生数学学习的新观念、新思路提出更高的要求。进一步培养学生数学学习的创新能力。创新是一个民族不竭的动力,创新就要解放思想,实事求是。而在我们的数学教学中,创新能力主要表现在能发现并提出自己的问题,对已解决问题寻求新的解法,善于反思优化自己的学习。“学起于思,思起于疑”。学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。所以在教学过程中,我们应创设更多的适合学生学习、富有趣味性挑战性的问题情境,通过学生自己动手操作、动脑思考、动口表达、探索未知领域,寻找客观真理,成为发现者。进一步培养学生的自主探究与合作交流的学习方式。自主探究与合作交流的学习方式是学生进行有意义学习的最佳方式,在教学实践中,老师应该多设计一些适合学生自主探究与合作交流的问题情境,并重视课本中“思考”与“提示”栏目的学习,真正使学生更多的参与到课堂教学中,切实使学生成为课堂学习的主体,使他们能亲身经历获取知识、形成数学结论的全过程,体验发现问题、分析问题、解决问题的思维方法及由此所得到的成功与快乐,不断培养学生自主探究意识与合作学习精神,从而不仅达到对新知识的彻底理解与掌握而且不断增强对数学的兴趣与信心,最终使学生学会学习。加强培养学生对知识、题型的积累,重视学生思维训练和推理能力的发展。八年级数学的学习在整个初中阶段可以说是最为关键的时期,它不仅是对七年级数学学习的进一步巩固与延伸,也对九年级数学学习乃至中考升学打好基础起着至关重要的作用。所以在这一阶段的教学中除了要更注重培养学生对知识、题型的积累的良好习惯外,还应重视对学生思维的训练和能力的发展。注意因材施教,满足不同学生的个体需求。课堂教学中注意设计各类不同层次、不同类别的问题,有针对性地引导不同层次学生思考解答,以促进各类学生都有所发展。课堂评价注意激励出学生的正确一面,恰当指出其努力方向。注意倾听不同学生的不同观点,激励大家一题多解、多题归一、一法多变,不断创新。结合学生的特点,组织形式多样的数学课外活动,培养学生的学习兴趣。“兴趣是最好的老师”,在数学教学中开展形式多样的数学课外活动,有助于培养学生的数学学习兴趣,在教学中老师要深入挖掘教材的相关内容及“阅读与思考”栏目,使学生对数学史料或背景知识等课外内容有更多的了解,并组织不同层次、形式多样的数学课外活动,使学生对数学的学习产生浓厚的兴趣,从而促进所有学生都能得到有效的发展。2.2、课程学习目标.第16章分式。以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。类比分数的基本性质,了解分式的基本性质,了解最简分式的概念,掌握分式的约分和通分法则。类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。第17章反比例函数。使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式y=k/x(x0),能判断一个给定函数是否为反比例函数.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点。能根据图象数形结合地分析并掌握反比例函数y=k/x(x0)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题;探索现实生活中数量间的反比例关系,在解决实际问题的过程中,进一步体会和认识反比例函数这种刻画现实世界中特定数量关系的数学模型;使学生在学习一次函数之后,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法。第十八章勾股定理。体验勾股定理的探索过程,会运用勾股定理解决简单问题。会运用勾股定理的逆定理判定直角三角形。通过具体的例子,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。第19章四边形。掌握平行四边形、矩形、菱形、正方形、梯形的概念,了解它们之间的关系。探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判别方法,并能运用这些知识进行有关的证明和计算。探索并了解线段、矩形、平行四边形、三角形的重心的物理意义。通过经历特殊四边形性质的探索过程,丰富学生从事数学活动的经验和体验,进一步培养学生的合情推理能力。结合特殊四边形性质和判定方法以及相关问题的证明,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。通过分析四边形与特殊四边形,以及平行四边形与各种特殊平行四边形概念之间的联系与区别,使学生认识到特殊与一般的关系,从而体会事物之间总是互相联系又是互相区别的,进一步培养学生的辩证唯物主义观点。第20章数据分析。进一步理解平均数、中位数和众数等统计量的统计意义。会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。能用计算器的统计功能进行统计计算,进一步体会计算器的优越性。会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。2.3、教学时应关注的问题。关于分式。重视分数与分式的联系,注意通过分数认识分式。数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程。人们首先从计算具体物体个数的活动中抽象出整数的概念,又从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象。人们在研究整数和分数的过程中,为了更好地反映一般规律,又抽象出整式和分式的概念,这是一种从数到式的抽象。正如前面所述,分数与分式的关系是具体与抽象、特殊与一般的关系,即相对于分式而言分数就是具体的、特殊的基础对象。分式是把具体的分数一般化后的抽象代表,根据这种关系,分式的基本性质、约分与通分、四则运算法则等应该与分数的基本性质、约分与通分、四则运算法则等相对应,即两者具有一致性,这也可以说是数式通性。“从具体到抽象,从特殊到一般”,是人们认识事物往往经历的过程,本章教科书对分式的概念、基本性质、约分与通分、四则运算法则等内容的展开,充分地考虑了这样的认识过程。因此,教学中应重视分数与分式的联系,考虑到学生对分数已有一定认识的基础,要发挥这样的认识基础的作用,通过分式与分数的类比,从具体到抽象、从特殊到一般地认识分式,这将有助于理解和记忆所学的分式内容。同时,这样的学习过程对于培养良好的学习方法也会起到引导作用。重视分式与实际的联系,体现数学建模思想。由于分式是在分数基础上再次抽象的产物,所以相对说来就与客观实际的联系而言,分式不如分数更直接。但是,如果我们不仅考虑实际问题中的具体数值,而且考虑其中的运算或对应规律,那么仍然有与分式存在密切联系的实际问题情景。如前所述,本章教科书中从引言开始安排了大量实际问题,一方面要体现与研究分数类似研究分式同样也是实际需要,另一方面也是为通过运用分式为工具分析与解决实际问题,提高学生把实际问题转化为数学形式的能力,即结合本章内容体现数学建模思想,进一步加强学生应用数学知识于实际问题的兴趣和意识,从长远看这将有助于培养学生的创新精神。在本章的教学和学习中,应重视分式与实际的联系,选择一些适合分式内容而又接近学生生活的实际问题,结合这些问题展开分式的内容。要注意避免脱离任何实际问题地讲述分式的内容,虽然这种纯数学的处理方法在数学体系内部并无问题,但是从教学角度看它具有局限性,不适合初中学生接受,也不利于全面地提高学生素质。总之,要充分注意有关现实背景,通过它们反映出分式来自实际又服务于实际,加强对代数式(包含分式)也是解决现实问题的一种数学模型的认识。对于把实际问题转化为有关代数式的问题,分析和解决它们的关键是找出问题中相关数量之间的运算关系,并把这样的关系“翻译”为数学形式,而正确地理解问题情境是基础。在本章的教学和学习中,可以从多种角度思考实际问题,例如借助图象、表格、式子等进行分析发现其中的数量关系,并检验所建立的式子的合理性。重视分式方程的特殊性,突出其解法的关键步骤。本章所讨论的主要对象是分式,分式方程与分式有直接的关系。如前所述,本章之前,已经出现过整式方程,对于解方程就是使方程逐步化为x=a的形式这一基本思路,学生已经比较熟悉。与整式方程相比,分式方程的特殊性是分母中含有未知数。正因如此分式方程的解法与整式方程的解法有两个明显的区别:a一般说,解分式方程时要通过去分母使它先转化为整式方程,也就是使未知数从分母的位置移上来。注意这里的去分母是在方程两边同乘一个含未知数的式子而不是一个非零常数,因此这样的去分母不能保证新方程与原方程同解。b通过去分母得出的解必须经过检验,当这个解使得分式方程的分母不为零时,它才是分式方程的解。 由于解一元一次方程已不是新问题,所以上述两点就成为本章中解分式的关键步骤。在本章的教学和学习中,应重视分析分式方程的特殊性,并根据它认识解分式方程的基本思路(先化分式方程为整式方程,再解出未知数,再检验确认),明白这样做的道理,再次体会化归思想在解方程时的指导作用。a如果抓住分式方程的特殊性,那么就能感到解分式方程的基本思路是非常很自然、合理的,而不会去死记硬背解法步骤了。这也就是说,抓住分式方程的特殊性就能突出解分式方程的关键步骤及其算理,在已有的对解方程的认识的基础上再认识分式方程的解法。b需要强调:本章的主要内容包括分式的基本概念、基本性质、基本运算,分式方程的基本解法等,这些都是进一步学习数学时必须具备的基础知识,打好基础很重要,因此教学中应注意通过必要的练习使学生切实掌握它们。 关于反比例函数。注意做好与已学内容的衔接。教科书在“第14章一次函数”已经给出了函数的一般概念以及自变量、函数值等概念,学生对函数已经形成了初步的认识。反比例函数的教学,一方面要以前面所学的函数概念及相关知识为基础,另一方面可以反过来进一步深化对函数内涵的理解和掌握。从学生第一次接触函数所蕴涵的“变化与对应”思想至今已近半年,学生对与函数相关的概念不可避免会有所遗忘或生疏。因此,学习好本章的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。例如,在引进反比例函数概念时,要适时复习第14章中的函数、自变量、函数值、正比例函数、一次函数等定义或概念,为反比例函数的学习做好铺垫。这样,学生就能够比较顺利地接受和掌握反比例函数的概念和性质。加强反比例函数与正比例函数的对比。在复习“第14章 一次函数”内容的基础上,引进本章内容。应该有意识地加强反比例函数y=k/x(k为常数,k0)与正比例函数y=kx(k为常数,k0)之间的对比,对比可以从如下几方面进行:两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?在常数k相同的情况下,当自变量x变化时两种函数的函数值y的变化趋势有什么区别?两种函数中x的取值范围有何不同?常数k的符号改变对两种函数图象所处象限的影响如何?回答是这样的:(a)两种函数的解析式的相同点是,自变量只有一个,即x,都有一个常数k,且k0;不同点是自变量x在解析式中的位置不同,正比例函数的解析式y=kx的右边是一个整式,不为0的常数k是自变量x的系数,而反比例函数的解析式y=k/x(k0,)的右边是一个分式,自变量x处在分母的位置,不为0的常数k处在分子的位置。两种函数的图象都分布在两个象限内,这是相同之处;不同点在于正比例函数的图象是一条直线,而反比例函数的图象是两支曲线。正比例函数的图象经过原点,而反比例函数的图象不经过原点。(b)在常数k0相同的情况下,当自变量x增大(减小)时,正比例函数的y值增大(减小),而反比例函数的y值减小(增大);在常数k0时,两类函数的图象都分布在一、三象限;当k0时,两类函数的图象都分布在二、四象限。对于这些问题,不要急于给出答案,应该注意鼓励学生积极探究,在这样的氛围中,学生的数学思维和兴趣会被激发起来,对所学内容的掌握也就更牢固。把突出函数中蕴涵的重要数学思想作为本章的主要线索。无论从一次函数到反比例函数,再到以后的二次函数,甚至高中的其他各类函数,都是函数的某种具体形式,都是为近一步深刻领会函数的内涵提供了一个平台。随着学习的函数类型的增多,学生对函数内涵的理解也会逐步提高。可以说对函数内涵的理解是一个渐进的过程,需要较长的时间。对于一个具体的反比例函数来说,它有其自身的独特性质,但其中蕴涵的变化与对应的数学思想是具有普遍性的。在教学时,尤其要注意在这种数学思想的渗透方面下功夫。通过对图象的研究和分析可以确定函数本身的性质,这体现的是数形结合的数学思想方法,数形结合思想是数学中最重要的思想之一。而数形结合的思想早在学习数轴、平面直角坐标系时就已经学习到了。结合本章内容可以进一步对数形结合的思想方法顺其自然地理解,并逐步加以灵活运用,发挥从数和形两个方面共同分析解决问题的优势。教学过程中,可以安排较多的通过图象分析函数解析式、通过函数解析式分析图象的题目,这体现的既是数形结合思想,也体现了转化的数学思想。深刻领会函数解析式与函数图象之间的联系,突出两者间的转化对分析解决问题的特殊作用。突出变化与对应的思想、数形结合思想和转化思想是本章教学的重要任务,充分发挥教材中“思考”栏目应有的作用,对实现上述任务是大有裨益的。一些具体的数学知识对学生的影响也许是短暂的,但一些重要的数学思想方法必将会使学生终身受益。突破知识的难点和重点。本章的重点是反比例函数的概念、图象和性质,图象是直观地描述和研究函数的重要工具。教材中给出了大量的具体的反比例函数的例子,用以加深学生对所学知识的理解和融会贯通。本章的难点是对反比例函数及其图象和性质的理解和掌握,教学时在这方面要投入更多的精力。尽管本章中反比例函数的内容还是比较初级的知识,但是对这些知识的掌握却是为学习后续的函数知识打下基础。因此,教学中对本章基本知识和基本技能的要求不能有丝毫降低。要适时安排适当难度的习题,以使学生对基础知识形成深刻的印象、对基本技能达到熟练的程度。有条件的地方应尽可能使用信息技术,在本章“信息技术应用”栏目中,给出了k变化时,反比例函数y=kx(k为常数,k0)的图象是如何变化的。尽管这一性质不是必学内容,但有兴趣和学有余力的同学却可以从中获益。关于勾股定理。让学生获得更多与勾股定理有关的背景知识。与勾股定理有关的背景知识丰富,除正文介绍的有关内容外,教科书在“阅读与思考勾股定理的证明”中介绍了另外几种证明勾股定理的方法,还安排了一个数学活动,让学生收集一些证明勾股定理的方法,并与同学交流。在教学中,应注意展现与勾股定理有关的背景知识,使学生对勾股定理的发展过程有所了解,感受勾股定理的丰富文化内涵,激发学生的学习兴趣。特别应通过向学生介绍我国古代在勾股定理研究方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感,同时教育学生发奋图强,努力学习,为将来担负起振兴中华的重任打下基础。适当总结与定理、逆定理有关的内容。本章中给出了逆定理的概念,可以在小结中回顾已学的一些结论。例如,在第十一章“全等三角形”中,利用三角形全等证明了“角的平分线上的点到角的两边的距离相等”“角的内部到角的两边的距离相等的点在角的平分线上”,前一个结论也称为角的平分线的性质定理,而后一个结论是角的平分线的性质定理的逆定理。这样就可以从定理、逆定理的角度认识已学的一些结论,明确其中一些结论之间的关系。互逆命题、互逆定理的概念,学生接受它们困难不大,对于那些不是以“如果那么”形式给出的命题,叙述它们的逆命题困难较大,是教学中的一个难点。解决这个难点的方法是,适当复习命题的有关内容,学会把一个命题变为“如果那么”的形式。注意这些概念是第一次学习,不要要求过高。关于四边形。重视重要概念的教学。由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,学生往往搞不清楚它们的共性、特性及其从属关系,有时掌握了它们的特殊性质,而忽视了共同性质。如有的学生不知道正方形是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误。教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质。也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业自动化与制造成型技术探讨
- 工业自动化与机器人实验室研究报告
- 工业设计与科技创新的互动
- 工业设计与产品创新思路分享
- 工作效率提升与技巧培训
- 工作效率提升的饮食与运动建议
- 工作场所中的多元化团队协同策略
- 工作流程优化与管理方法探讨
- 工程教育实践与学生能力培养模式研究
- 工程机械的智能化与无人化技术应用研究
- 2023春国开经济法律基础形考任务1-4试题及答案
- 80m3液化石油储罐结构设计及焊接工艺设计
- 2023-2024学年四川省凉山州小学数学五年级下册期末自测试卷
- 十小咒注音版
- 2021国开电大操作系统形考任务 实验报告-进程管理实验
- 中医药膳学全解共94张课件
- 重庆市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 学生公寓维修改造工程施工组织设计
- 小学高段语文审题能力的培养
- 护理人文关怀质量评价标准
- 【北师大版】七年级上册数学 第四章 图形的全等 单元检测(含答案)
评论
0/150
提交评论