


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_数学游戏教学设计1、圆柱 包括三部分内容:圆柱的认识、圆柱的表面积、圆柱的体积。安排了6个例题。圆柱的认识:首先从生活中的圆柱实物或模型入手,引导学生认识圆柱的特征及各个部分的名称,让学生经历由“形象表象抽象的过程。然后通过观察交流,抽象圆柱的特征。例1的教学,重点在认识圆柱的特征。教学中应加强直观演示并让学生通过观察和操作,即看一看,摸一摸,比一比认识圆柱的底面、侧面和高,发现他们的特征;之后安排这样一个有趣的操作活动,使学生从旋转的角度认识圆柱,即绕长方形的一条边快速旋转,形成圆柱形状,感受并沟通从平面图形与立体图形的转换。让学生快速转动长方形纸片活动,只要求学生操作、感知,不必做更深入的讲解。本节课的难点应放在例2,即认识圆柱的侧面展开图。指导展开圆柱侧面的方法,理解侧面展开后的形状。教学时要放手让学生经历探索知识的过程,再一次沟通从立体图形再到平面图形的转换。可这样设计教学过程:(1)先让学生摸一摸圆柱形实物,圆柱侧面在哪里,猜想一下侧面展开后是什么形状。(2)接着让学生动手操作再剪开侧面,再展开,看有什么发现。学生准备的圆柱体各不相同,在剪开的过程中并不是千篇一律,故可能会出现:圆柱的侧面展开后是一个长方形或是平行四边形,对于这些操作结果教师都应给予肯定和鼓励,并让学生说说是怎样剪的,以培养学生从不同角度思考问题的习惯。(3)最后再让学生观察思考“圆柱侧面展开得到的长方形的长、宽与圆柱的什么有关?”让学生经过分析、比较,概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。最后让学生思考:“什么情况下圆柱侧面展开图是正方形?”这样学生通过在亲历立体图形与其展开图之间的转化,逐步建立了立体图形与平面图形的联系,进一步发展了空间观念。“做一做”让学生制作圆柱,加深对圆柱特征的认识,也为后面学习计算圆柱的表面积做准备。圆柱的表面积2、理解圆柱表面积的概念,探索表面积的计算方法。因为学生已有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。所以对于圆柱表面积的理解并不困难。例3的教学让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积圆柱的侧面积两个底面的面积。圆柱的侧面积底面周长高。例4的教学是关于圆形物体表面积的计算,关于例4的教学,我个人认为要注意这样几点:圆柱形物体在计算表面积之前一定要先判断此圆柱体是几个面,什么面,再来进行计算;圆柱形物体表面积的计算的步骤较多,学生在熟练应用公式计算之前,最好是分步进行计算,即先求出侧面积和底面积,再求出表面积。注意每一步的运算结果要写上正确的计量单位;圆柱表面积计算结果再取近似值时,一定要注意不可乱用“四舍五入法”取近似值,而是用进一法取近似值,。完成例4后,做一做是一道计算圆柱表面积的基本题型可让学生独立完成,订正后后可与例4进行比较,找出两题不同之处,同样都是求圆柱体的表面积,为什么这题要求侧面和两个底面的面积之和,而例4求侧面和一个底面的面积之和?使学生明确在解决实际问题时,求表面积要根据具体情况确定计算哪些面的面积之和。3、应用转化策略,教学圆柱的体积计算公式。例5教学圆柱体积公式的推导,例6是利用圆柱体积计算解决问题。(1)例5,渗透了转化的思想。首先从回顾旧知(长方体、正方体的体积计算)入手,引出圆柱体积的计算问题,并提出圆柱能否转化成已学过的立体图形来计算体积。接着通过教具演示图说明把圆柱的底面分成若干个相等的扇形,把圆柱切开,拼成一个近似的长方体。在这个教学环节中,教师一定不要忽略操作与直观演示,也可借助多媒体。然后引导观察和推理,得出这个长方体的底面积等于圆柱的底面积S,高就是圆柱的高h,并由长方体的体积计算公式得出圆柱的体积计算公式为VSh。(2)例6之前,安排了已知圆柱底面半径r和高h,将圆柱体积计算公式V=sh的内容延伸成V=。 (3)例6,创设了一个生活化的问题情境“这个杯子能不能装下这袋牛奶?”解决这个问题,先要计算杯子的容积,使学生明白圆柱形容器容积的计算方法,跟圆柱体积的计算方法相同,从里面量出需要的数据后,可直接利用V=sh计算。1圆锥的认识。内容主要包括:圆锥的特征及各部分名称,其编排与圆柱的认识类似,教学中可参考圆柱的教学,但教师可放手学生自己探究发现总结。圆锥的体积例2教学圆锥体积公式的推导,例3是圆锥体积公式的应用。例2,教材按“引出问题联想、猜测实验探究导出公式”四个层次编排。(1)引出问题。首先提出“你有办法知道这个铅锤的体积吗?”让学生讨论,讨论结果是:可以用排水法,但这种方法太麻烦。从而产生推导圆锥体积公式的动机。(2)联想、猜测。学生讨论,回想会计算哪些图形的体积,思考圆锥的体积和哪种图形的体积有关?从而将圆锥和圆柱的体积联系起来。(3)实验探究。首先让学生准备好等底、等高的圆锥和圆柱,学生可以借助自己的学具,进一步通过圆柱圆锥相互倒水或沙子的实验,探究圆锥和圆柱体积之间的关系。(4)导出公式。通过试验学生发现:等底等高的圆锥和圆柱,圆锥的体积是圆柱体积的。由此得出圆锥体积的计算公式V= 1/3sh整理和复习课时安排建议:一课时。1、引导归纳总结,形成知识网络。2、借助直观手段帮助学生回顾、总结图形的特征及计算方法。3、注意知识之间的内在联系与区别。“数学游戏”“剪大洞” 教材(第31页)则是让学生在动手实践过程中,体会图形变换的奇妙,等等。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 橡胶膏剂抗菌食品包装-洞察及研究
- 封记管理制度
- 手指画梅花课件
- 手指宝宝做运动课件
- 预警系统实时性提升策略-洞察及研究
- 江苏省徐州市云龙区徐州培栋实验学校2025-2026学年四年级上学期9月月考数学试题(无答案)
- 贵州省遵义市航天高级中学2025-2026学年高三上学期第一次月考物理试卷(含答案)
- 2024-2025学年云南省昭通市人教版五年级下册期中综合素养测试数学试卷(含答案)
- 学生网络安全培训心得课件
- 手卫生课件教学
- 拔罐适应症研究-洞察及研究
- 2025《政务数据共享条例》法律法规课件
- Q-SY 02045-2024 柔性压裂管汇使用技术规范
- 华为干部晋升管理制度
- T/CACEM 31.5-2023高速公路经营管理第5部分:服务区服务要求
- 劳动技术-七年级上册-全册教案-湖南教育出版社
- 外贸矿产代理协议书
- 品质协议书范本
- 医院污水处理站服务外包项目投标方案(技术方案)
- 2024年全球及中国运动功能性针织面料行业头部企业市场占有率及排名调研报告
- 2025版预防接种规范
评论
0/150
提交评论