




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题: 25.2 列举法求概率一、教学目标:1、知识与技能目标 : 1.使学生在具体情境中了解概率的意义,能够运用列表法和树形图法计算简单事件发生的概率,并阐明理由。2.使学生能够从实际需要出发判断何时选用列表法或树形图法求概率更方便。2、过程与方法目标 : 通过实验、观察、分析、计算,在活动中培养学生探究问题能力,合作交流意识。渗透数形结合,分类讨论,由特殊到一般的思想,并在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。3、情感与态度目标 通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。二、教学重点:学习运用列表法或树形图法计算事件的概率。三、教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。四、教学方法探究引导交流发现本节课共设计了5个教学活动,难易程度由浅入深、层层递进,通过游戏的形式,学生在动手操作、观察分析、类比归纳中,通过自主探究、合作交流,在教师的启发指导下,学生在轻松愉快的环境中探求新知。充分体现了“数学教学主要是数学活动教学”这一思想,体现了师生互动、生生互动的教学理念。呈现方式:问题探究拓展归纳应用利用多媒体形象生动的特点,增加了课堂的趣味性和直观性,激发学生学习兴趣和求知欲望,激活学生思维能力,增大了教学容量,对解决重点、突破难点起到辅助作用。五、学法指导新课标理念倡导“以人为本”强调“以学生发展为核心” ,指导学生学会“探究式发现法”的学习方法,从类比猜想中探索研究,从而找到问题的思路和方法通过数学活动,激发兴趣;找出解决问题的方法。六、教学过程:教学结构包括五个环节第一环节:创设情景、复习引入第二环节:探究问题,寻找方法第三环节:引深拓展,归纳总结第四环节:巩固知识,实际应用第五环节:交流反思,课时小结1.创设情境、 引入新课问题一:“猜硬币游戏” 1、老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢。请问,你们觉得这个游戏公平吗? 学生分组实验: 把其所能产生的结果全部列举出来,是正正、正 反、反正、反反。所有的结果共有四种,并且这个结果出现的可能相同。(1)满足两枚硬币一正一反(记为事件A)(2)满足两枚硬币两面一样(记为事件B) 由于双方获胜的概率一样,所以游戏是公平的。问题2如果有两组牌,它们牌面数字分别为1、2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和是多少?2.探究问题,寻找方法问题1:(1)你能否找到更简便的方法把可能出现的结果不重不漏的列出来吗?(分组实验,探究交流。)(2)问题:两张牌面数字和为几的概率最大?概率是多少?用三种方法回答上述问题,动手实践。幻灯片展示三种方法通过引例的分析,学生对列表法和树形图法求概率有了初步的了解,为了帮助学生熟练掌握这两种方法,我选用了下列两道例题(本节教材P136-137的例3和例4)。问题2 例3:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2例3是教材上一道“掷骰子”的问题,有了引例作基础,学生不难发现:引例涉及两个转盘,这里涉及两个骰子,实质都是涉及两个因素。于是,学生通过类比列出下列表。 第2个第1个1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。由所列表格可以发现:(1)满足两个骰子的点数相同(记为事件A)的结果有6个,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)=。满足条件的结果在表格的对角线上(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个,即(3,6),(4,5),(5,4),(6,3),所以P(B)=。满足条件的结果在(3,6)和(6,3)所在的斜线上(3)至少有一个骰子的点数为2(记为事件C)的结果有11个,所以P(C)=。满足条件的结果在数字2所在行和2所在的列上接着,引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。运用列表法求概率的步骤如下:列表 ; 通过表格计数,确定公式P(A)=中m和n的值;利用公式P(A)=计算事件的概率。分析到这里,我会问学生:“例3题目中的“掷两个骰子”改为“掷三个骰子”,还可以使用列表法来做3.引导拓展,归纳总结(1)、什么时候用“列表法”方便?(2)、如果把上一个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所有可能出现的结果有变化吗?随堂练习(1)是一道与实际生活相关的交通问题,可用树形图法来解决。: 在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?通过解答随堂练习(2),学生会发现列出的表格和例1的表格完全一样。不同的是:变换了实际背景,设置的问题也不一样。教学例4:甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。从3个口袋中各随机地取出1个小球。(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少? 例4与前面两题比较,有所不同:要从三个袋子里摸球,即涉及到3个因素。此时同学们会发现用列表法就不太方便,可以尝试树形图法。本游戏可分三步进行。分步画图和分类排列相关的结论是解题的关键。ACDEHIHIHIBCDEHIHIHI甲乙丙从图形上可以看出所有可能出现的结果共有12个,即:ACHACIADHADIAEHAEIBCHBDHBDIBEHBEIBCI(幻灯片上用颜色区分)这些结果出现的可能性相等。(1)只有一个元音字母的结果(黄色)有5个,即ACH,ADH,BCI,BDI,BEH,所以;有两个元音的结果(白色)有4个,即ACI,ADI,AEH,BEI,所以;全部为元音字母的结果(绿色)只有1个,即AEI ,所以。(2)全是辅音字母的结果(红色)共有2个,即BCH,BDH,所以。通过例2的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法求概率的步骤如下:(幻灯片)画树形图 ; 列出结果,确定公式P(A)=中m和n的值;利用公式P(A)=计算事件概率。接着我向学生提问:到现在为止,我们所学过的用列举法求概率分为哪几种情况? 列表法和画树形图法求概率有什么优越性?什么时候使用“列表法”方便,什么时候使用“树形图法”更好呢?【设计意图】 通过对上述问题的思考,可以加深学生对新方法的理解,更好的认识到列表法和画树形图法求概率的优越性在于能够直观、快捷、准确地获取所需信息,有利于学生根据实际情况选择正确的方法。归纳总结(!)想一想,什么时候用“列表法”方便,什么时候用“树形图”方便?当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图(2)用列举法求概率的步骤:a.指出一次试验中n种可能性相等的结果.b.指出事件A所包含的m种结果.c.根据公式P(A)= mn 进行计算.4、巩固知识,实际应用练习2:在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?1、从盒子中取出一个小球,小球是红球2、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同3、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力,在此我选择了教材P138课后练习作为随堂练习。思考:(1)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:三辆车全部继续前行;两辆车向右转,一辆车向左转;至少有两辆车向左转。这时,我提出:我们是否可以根据这个表格再编一道用列举法求概率的题目来呢?为了进一步拓展思维,我向学生提出了这样一个问题,供学生课后思考:在前面的引例中,转盘的游戏规则是不公平的,你能把它改成一个公平的游戏吗?【设计意图】 以上问题的提出和解决有利于学生发现数学问题的本质,做到举一反三,融会贯通。我将引导学生从知识、方法、情感三方面来谈一谈这节课的收获。要求每个学生在组内交流,派小组代表发言。【设计意图】 通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状况、因材施教提供了重要依据。5.交流反思,课堂小结 (1)用列表法或树形图法求概率时要注意些什么?(2)什么时候用列表法方便?什么时候用树形图法方便?布置作业教科书第138页:3,4,5题考虑到学生的个体差异,为促使每一个学生得到不同的发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论