




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_求解系统的状态方程一、实验设备PC计算机,MATLAB软件,控制理论实验台二、实验目的(1)掌握状态转移矩阵的概念。学会用MATLAB求解状态转移矩阵(2)学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应;(3)通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制输出响应和状态响应曲线;(4)掌握利用MATLAB导出连续状态空间模型的离散化模型的方法。三、实验原理及相关基础(1)参考教材P99101“3.8利用MATLAB求解系统的状态方程”(2)MATLAB现代控制理论仿真实验基础(3)控制理论实验台使用指导4、 实验内容(1)求下列系统矩阵A对应的状态转移矩阵(a)(b)代码: syms lambda A=lambda 0 0;0 lambda 0;0 0 lambda;syms t;f=expm(A*t)(c)代码: syms t;syms lambda;A=lambda 0 0 0;0 lambda 1 0;0 0 lambda 1;0 0 0 lambda;f=expm(A*t)(2) 已知系统a) 用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。观察并记录这些曲线。(1)代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;u=1;syms t;f=expm(A*t);%状态转移矩阵x0=0;s1=f*B*u;s2=int(s1,t,0,t)%状态方程解析解状态曲线:(2)A=0 1;-2 -3; syms t; f=expm(A*t); X0=1;0; t=0:0.5:10; for i=1:length(t); g(i)=double(subs(f(1),t(i); end plot(t,g)(3) 状态转移矩阵syms lambdaA=lambda 0 0;0 lambda 0;0 0 lambda;syms tf=expm(A*t)b) 计算系统在初始状态作用下状态响应和输出响应的数值解(用函数initial( ), 绘制系统的状态响应曲线和输出响应曲线。观察并记录这些响应曲线,然后将这一状态响应曲线与a)中状态响应曲线进行比较。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;G=ss(A,B,C,D);t=0:0.5:10;x0=1;0y0,t,x0=initial(G,x0,t);plot(t,x0,-,t,y0,-)c) 根据b)中所得的状态响应的数值解,绘制系统的状态轨迹(用命令plot(x(:,1), x(:,2)。记录系统状态转移的过程,结合a)和b)中的状态响应曲线分析这一过程。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;t=0:0.01:10;x0=1;0;G=ss(A,B,C,D)y,t,x=initial(G,x0,t);plot(x(:,1),x(:,2)2) 令初始状态为零,输入为u(t)=1(t).= a) 用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。观察并记录这些曲线。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;G=ss(A,B,C,D); y,t,x=step(G);plot(t,x)b) 计算系统在初始状态作用下状态响应和输出响应的数值解, 绘制系统的状态响应曲线和输出响应曲线。观察并记录这些响应曲线,然后将这一状态响应曲线与a).中状态响应曲线进行比较。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;G=ss(A,B,C,D);G=ss(A,B,C,D);t=0:0.5:10; x0=1;-1;y0,t,x0=initial(G,x0,t);plot(t,x0,-,t,y0,-)c) 根据b)中所得的状态响应的数值解,绘制系统的状态轨迹。记录系统状态转移的过程,结合a)和b)中的状态响应曲线分析这一过程。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0; t=0:0.5:10; G=ss(A,B,C,D); x0=0 0;y0,t,x0=initial(G,x0,t);plot(t,x0,-,t,y0,-)绘制系统的状态响应曲线、输出响应曲线和状态轨迹。观察和分析这些响应曲线和状态轨迹是否是(1)和(2)中的响应曲线和状态轨迹的叠加。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;t=0:0.01:10;x0=1 -1;G=ss(A,B,C,D);y,t,x=initial(G,x0,t);plot(t,x)4) 令初始状态为零,输入为u(t)=3sin(5t)。计算状态响应和输出响应的数值解(用函数lsim( ),并绘制系统的状态响应曲线、输出响应曲线和状态轨迹。代码:A=0 1; -2 -3;B=3;0;C=1 1;D=0;t=0:0.01:10;u=3*sin(5*t);G=ss(A,B,C,D);y,t,x=lsim(G,u,t);plot(t,x)(3)已知系统1)当输入为u(t)=(t)时,用函数initial( )和 impulse( )求解系统的状态响应和输出响应的数值解,并绘制系统的状态响应曲线、输出响应曲线和状态轨迹。状态响应:A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.5:10;G=ss(A,B,C,D);x0=1,0,-1;y,t,x=initial(G,x0,t);u=ones(size(t);plot(t,x,t,y)输出响应:A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.01:10;u=ones(size(t); G=ss(A,B,C,D); y,t,x=lsim(G,u,t); plot(t,x)2)当输入为u(t)=1(t)时,用函数initial( )和 step( )求解系统的状态响应和输出响应的数值解,并绘制系统的状态响应曲线、输出响应曲线和状态轨迹。状态响应A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.5:10;G=ss(A,B,C,D);x0=1,0,-1;y,t,x=initial(G,x0,t);u=step(G);plot(t,x,t,y)输出响应:A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;G=ss(A,B,C,D);y,t,x=step(G);plot(t,x)3)当输入为u(t)= t 时,用函数initial( )和 lsim( )求解系统的状态响应和输出响应的数值解,并绘制系统的状态响应曲线、输出响应曲线和状态轨迹。状态响应A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.5:10;G=ss(A,B,C,D);x0=1,0,-1;y,t,x=initial(G,x0,t);u=t;plot(t,x,t,y)输出响应A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.01:10;u=t; G=ss(A,B,C,D); y,t,x=lsim(G,u,t); plot(t,x)4)当输入为时,用函数initial( ) 和lsim( )求解系统的状态响应和输出响应的数值解,并绘制系统的状态响应曲线、输出响应曲线和状态轨迹.状态响应A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.5:10;G=ss(A,B,C,D);x0=1,0,-1;y,t,x=initial(G,x0,t);u=sin(t);plot(t,x,t,y)输出响应A=0,1,0;0,0,1;-6,-11,-6;B=0;0;1;C=6,0,0;D=0;t=0:0.01:10;u=sin(t); G=ss(A,B,C,D); y,t,x=lsim(G,u,t); plot(t,x)(4) 已知一个连续系统的状态方程是若取采样周期秒0.05 T = 1) 试求相应的离散化状态空间模型;代码:syms T;A=0 1;-25 -4;B=0;1;Gz,Hz=c2d(A,B,T)G = exp(- 2*T - 21(1/2)*T*i)/2 + exp(- 2*T + 21(1/2)*T*i)/2 + (21(1/2)*exp(- 2*T - 21(1/2)*T*i)*i)/21 - (21(1/2)*exp(- 2*T + 21(1/2)*T*i)*i)/21, (21(1/2)*exp(- 2*T - 21(1/2)*T*i)*i)/42 - (21(1/2)*exp(- 2*T + 21(1/2)*T*i)*i)/42 - (21(1/2)*exp(- 2*T - 21(1/2)*T*i)*25*i)/42 + (21(1/2)*exp(- 2*T + 21(1/2)*T*i)*25*i)/42, exp(- 2*T - 21(1/2)*T*i)/2 + exp(- 2*T + 21(1/2)*T*i)/2 - (21(1/2)*exp(- 2*T - 21(1/2)*T*i)*i)/21 + (21(1/2)*exp(- 2*T + 21(1/2)*T*i)*i)/21 H = 1/25 - exp(- 2*T + 21(1/2)*T*i)/50 - (21(1/2)*exp(- 2*T - 21(1/2)*T*i)*i)/525 + (21(1/2)*exp(- 2*T + 21(1/2)*T*i)*i)/525 - exp(- 2*T - 21(1/2)*T*i)/50 (21(1/2)*exp(- 2*T - 21(1/2)*T*i)*i)/42 - (21(1/2)*exp(- 2*T + 21(1/2)*T*i)*i)/42 2) 分析不同采样周期下,离散化状态空间模型的结果。A=0 1;-25 -4;B=0;1;Gz,Hz=c2d(A,B,0.05)Gz = 0.9709 0.0448 -1.1212 0.7915Hz = 0.00120.04485、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7中国石油合规管理信息平台系统介绍v1.3
- 安顺地区面试题库精 编:职业指导与实战技巧
- 媒体行业融媒体记者面试真题及答案解析
- 物理面试题目精 编及答案解析
- 高效准备职业面试:武汉入学面试题库及答案精 编版
- 知识题库-水泥行业机械专业知识考试题目(附答案)
- 中超比赛讲解
- 施工组织汇报材料
- 八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.1矩形第2课时矩形的判定作业课件
- 职业规划与面试技巧:各类考试面试题库分享
- 2025年住培结业考试题库及答案
- 写字楼租赁合同法律风险及防范指南
- DB42∕T 2151-2023 应急物资储备库建设规范
- 养老机构医养结合交流合作总结范文
- 分包招采培训课件
- 神经刺激器行业深度调研及发展项目商业计划书
- 公司全员销售管理办法
- 工贸行业重大事故隐患判定标准安全试题及答案
- 2025年全国新高考I卷高考全国一卷真题语文试卷(真题+答案)
- 课程思政教学课件
- 2025至2030中国建筑防腐行业发展趋势与前景分析报告
评论
0/150
提交评论