




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档 一元二次方程考点整合1、一元二次方程概念:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。 2、一般表达式: 其中是二次项,叫二次项系数;是一次项,叫一次项系数,是常数项。二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。3、使方程两边相等的未知数的值,就是方程的解。4、一元二次方程的解法:(1)直接开方法,适用于能化为 的一元二次方程。(2)因式分解法,即把一元二次方程变形为(x+a)(x+b)=0的形式,则(x+a)=0或(x+b)=0 (3)配方 法,即把一元二次方程配成形式,再用直接开方法,(4)公式法,其中求根公式是 (b2-4ac0)5、根的判别式、根与系数的关系:当b2-4ac0时,方程有两个不相等的实数根。当b2-4ac=0时,方程有两个相等的实数根。当b2-4ac0时,方程有没有的实数根。如果一元二次方程有两根则有6、列一元二次方程解实际应用题步骤考点精析考点一、一元二次方程的解例1:(2011黑龙江哈尔滨3分)若=2是关于的一元二次方程2m8=0的一个解则m的值是(A) 6 (B) 5 (C) 2 (D)6 1. (2011广西贵港3分)若关于x的一元二次方程x2mx20的一个根为1,则另一个根为A1B1C2D22.(2012年河北一模)关于x的一元二次方程(1) x2+x+21=0的一个根是0,则a的值为( )A. 1 B. 1 C. 1或1 D. 03. (2011广西百色3分)关于的方程的一个根为1,则的值为A.1 B. . C.1或. D.1或.4. (2012年浙江一模)已知关于x的方程的一个根是1,则k= 考点二、一元二次方程的解法例题1,:(1)(2012湖北荆州)用配方法解关于x的一元二次方程x22x30,配方后的方程可以是( )A(x1)24 B(x1)24 C(x1)216 D(x1)216(2)(2012山东省滨州中考)方程x(x2)=x的根是 (3)(2011江苏省无锡市)解方程:x4x+2=0举一反三1:(2012贵州铜仁,17,4分一元二次方程的解为_;2:(2012贵州黔西南州,4,4分)三角形的两边分别为2和6,第三边是方程x210x21=0的解,则第三边的长为( )A7 B3 C7或3 D无法确定3:解方程:(1)(2011广东清远6分)解方程:21=0(2)(2011湖北武汉6分)解方程:2+3+1=0.考点三:根的判别式,根与系数的关系例题:(2012湖北襄阳)如果关于x的一元二次方程kx2x10有两个不相等的实数根,那么k的取值范围是AkBk且k0CkDk且k0举一反三1. (2011广西钦州)下列关于的一元二次方程中,有两个不相等的实数根的方程是( )ABC D2. (2012北京昌平初三一模)若关于x的一元二次方程(a1)x22x+1=0有两个不相等的实数根,则a的取值范围是( )Aa2且a0 a2 a2且a1 a23. (2011福建厦门)已知关于x的方程x22x2n=0有两个不相等的实数根(1)求n的取值范围;(2)若n5,且方程的两个实数根都是整数,求n的值考点四:一元二次方程的应用例题:(2012南京市)某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的近价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为 万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)举一反三1. (2012广东湛江)湛江市2009年平均房价为每平方米4000元连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A5500(1+x)2=4000 B5500(1x)2=4000C4000(1x)2=5500 D4000(1+x)2=55002. (2012山东省青岛市,12,3)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列方程为 .3. (2012湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m21. (2011辽宁本溪3分)一元二次方程的根(D )A、 B、C、 D、 2. (2011江苏苏州3分)下列四个结论中,正确的是( D ) A方程有两个不相等的实数根 B方程有两个不相等的实数根C方程有两个不相等的实数根 D方程(其中a为常数,且)有两个不相等的实数根3. (2011山东潍坊3分)关于的方程的根的情况描述正确的是.(B )A为任何实数,方程都没有实数根B为任何实数,方程都有两个不相等的实数根C为任何实数,方程都有两个相等的实数根D根据的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种4. (2012江西高安)关于x的一元二次方程有两个相等的实数根,则m的值是( )ABCD或中国教育出*版&网%5. (2012四川沙湾区调研) 菱形的边长是,两条对角线交于点,且、的长分别是关于的方程的根,则的值为( ) A. B. C. 或 D. 或6. (2011山东济宁3分)已知关于的方程2=0的一个根是(0),则值为A.-1 B.0 C.1 D.2 7. 已知方程x2+bx+a=0有一个根是a(a0),则下列代数式的值恒为常数的是( )A.ab B. C.a+b D.ab 已知三角形两边长是方程x25x+6=0的两个根,则三角形的第三边c的取值范围是 . 9. (2011甘肃兰州4分)关于x的方程a(x+m)2+b=0的解是x1=2,x2=1,(a,m,b均为常数,a0),则方程a(x+m+2)2+b=0的解是 10(2008河南)在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm,设金色纸边的宽为cm,那么满足的方程为 . 解:由题意得:11.解方程:(1)(2012安徽) (2)(2012年江阴模拟) (3)(2009武汉) 12. (2012浙江椒江二中、温中联考)网)某市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费万元;购置喷灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为;另外每公顷种植蔬菜需种子、化肥、农药等开支万元。每公顷蔬菜年均可卖万元。若某菜农期望通过种植大棚蔬菜当年获得万元收益(扣除修建和种植成本后),工作组应建议他修建多少公顷大棚。(结果用分数表示即可)13. (2012湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m214. (西城2012年初三一模)某批发商以每件50元的价格购进800件T恤第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元设第二个月单价降低x元(1)填表(不需要化简)时间第一个月第二个月清仓时单价(元)8040销售量(件)200(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?15. (重庆一中)某水果店批发一种成本为每箱30元的梁平柚子.据市场分析,若按每箱 40 元批发,一个月能批发600箱;若每箱批发价涨价1元,月批发量就减少10箱,针对柚子的批发情况,请解答下列问题:(1)当批发价定为每箱55元时,计算月批发量和月利润;(2)若批发价定为每箱元,月批发利润为元,求与 的函数关系式;当批发价定为每箱多少元时,月利润最大?(3)若水果店想在本月成本不超6000元的情况下,使得月利润达到10000元,则批发价应定为每箱多少元?1.(2011江津)已知关于的一元二次方程有两个不相等的实数根,则的取值范围是A、2B、2 C、2且lD、23题图2.(2007重庆)方程的解为 .3. (2011一中月)已知函数的图象如图所示,那么关于的方程的根的情况是( )AA有两不相等的实数根 B有两个相等实数根C无实数根 D不能确定 4(2010巴蜀模拟)方程的解是 。图1x/元501200800y/亩O图2x/元10030002700z/元O5.(2009西中)某市种植某种绿色蔬菜,全部用来出口为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元经调查,种植亩数(亩)与补贴数额(元)之间大致满足如图1所示的一次函数关系,但种植面积不超过3200亩随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益(元)会相应降低,且与之间也大致满足如图2所示的一次函数关系,且每亩收益不低于1800元(1)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益与政府补贴数额之间的函数关系式;(2)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少?并求出总收益的最大值 6.(2011育才二诊)现在互联网越来越普及,网上购物的人也越来越多,订购的商品往往通过快递送达当当网上某“四皇冠”级店铺率先与“青蛙王子”童装厂取得联系,经营该厂家某种型号的童装根据第一周的销售记录,该型号服装每天的售价(元/件)与当日的销售量(件)的相关数据如下表:每件的销售价(元/件)200190180170160150140每天的销售量(件)8090100110120130140已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求第一周销售中,与的函数关系式;(2)设第一周每天的赢利为元,求关于的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?(3)从第二周起,该店铺一直按第(2)中的最大日盈利的售价进行销售但进入第三周后,网上其他购物店也陆续推出该型号童装,因此第三、四周该店铺每天的售价都比第二周下降了%,销售量也比第二周下降了%(;第五周开始,厂家给予该店铺优惠,每件的进价降低了16元;该店铺在维持第三、四周的销售价和销售量的基础上,同时决定每件童装的快递费由买家自付,这样,第五周的赢利相比第二周的赢利增加了2%,请估算整数的值(参考数据:,)7.(2009重庆二模)某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩蔬菜的收益会相应降低.经调查,种植亩数(亩)、每亩蔬菜的收益(元)与补贴数额(元)之间的关系如下表:(元)0100200300 (亩)800160024003200(元)3000270024002100(1)分别求出政府补贴政策实施后种植亩数、每亩蔬菜的收益与政府补贴数额之间的函数关系式;(2)要使全县这种蔬菜的总收益(元)最大,政府应将每亩补贴数额定为多少?并求出总收益的最大值和此时种植亩数.(3)在取得最大收益的情况下,为了满足市场需求,用不超过70亩的土地对这种蔬菜进行反季节的种植.为此需修建一些蔬菜大棚,修建大棚要用的支架、塑料膜等材料平均每亩的费用为650元,此外还要购置喷灌设备,这项费用(元)与大棚面积(亩)的平方成正比例,比例系数为25. 这样,修建大棚后的这部分土地每亩的平均收益比没修前增加了2000元,在扣除修建费后总共增加了85000元. 求修建了多少亩蔬菜大棚?(结果精确到个位,参考数据:1.414)8.(2010金善)今年3月,位于虎溪大学城的龙湖“千万间”公租房项目开始动工。这是一个让人心动的“民生住房账本”未来10年,重庆市将建设4000万平方米的公共租赁房,今年开建500万平方米,3年(2010年-2012年)时间内完成2000万平方米的建设任务。某建筑公司积极响应,计划在今年12个月完成一定的建房任务。已知每平米的成本为1200元,按每平方米1600元的价格卖给政府.该公司平时每月能建2000平方米,为了加快进度,公司采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到提高.这样,第一月建了2200平方米,以后每月建房都比前一月多200平方米.由于机器损耗等原因,每增加100平方米,当月的所有建筑面积,平均每1平方米的成本就增加2元. (,)(1)若全市公共租赁房今年(2010年)到明年的建筑面积增长率就是以后每年的增长率,求此增长率.(2)今年4月份玉树发生了7.1级地震,该公司决定把最近某个月144万元的利润捐给灾区.请问是第几的个月?9.(2009重庆)某电视机生产厂家去年销往农村的某品牌电视机每台的售价(元)与月份之间满足函数关系,去年的月销售量(万台)与月份之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了。国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴。受此政策的影响,今年3月份至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 2608-2025硅砖
- 2025年慈善总会会计考试题库
- 2025年婚姻家庭咨询师初级笔试题库
- 2025年工业安全工程师面试题
- 2025年安全生产安全生产考试题库
- 2025年宁夏安全员考试重点题库及答案
- 2025年树葬行业应用与生态礼仪师考试预测题
- 2025年托育保健医生考试重点题解析
- 2025年山西C类安全员考试答案解析
- 2025年食堂安全管理员笔试冲刺题
- 进度质量考核管理办法
- 2025年宜宾市中考语文试题卷(含答案详解)
- 悬灸护理课件
- 肛肠科临床诊疗指南
- 自动化分选装置-洞察及研究
- 2025年中国白胡椒行业市场运营现状及投资方向研究报告
- 通海翡翠华庭建设项目 水土保持方案报告表
- 2025至2030年中国特种石墨行业市场发展态势及投资机会研判报告
- 小学科学新大象版一年级上册全册教案(2024秋)
- 乡村治理与乡村振兴规划
- T/CCMA 0206-2024混凝土机械液压平衡阀
评论
0/150
提交评论