




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
保密启用前 七年级上期培优训练3 12.15考试范围:直线、射线、线段;考试时间:100分钟;命题人:文老师题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第卷(选择题)请点击修改第I卷的文字说明 评卷人 得 分 一选择题(共12小题)1下列说法正确的是()A直线AB和直线BA是两条直线 B射线AB和射线BA是两条射线C线段AB和线段BA是两条线段 D直线AB和直线a不能是同一条直线2有下列生活,生产现象:用两个钉子就可以把木条固定在墙上从A地到B地架设电线,总是尽可能沿着线段AB架设植树时,只要确定两棵树的位置,就能确定同一行树所在的直线把弯曲的公路改直,就能缩短路程其中能用“两点之间,线段最短”来解释的现象有()ABCD3点A、B、C在同一条数轴上,其中点A、B表示的数分别为3、1,若BC=2,则AC等于()A3B2C3或5D2或64如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点若想求出MN的长度,那么只需条件()AAB=12BBC=4CAM=5DCN=25已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A7cmB3cmC7cm或3cmD5cm6A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A4B20C10D97已知A,B,C三点位于同一条直线上,线段AB=8,BC=5,则AC的长是()A13B3C13或3D以上都不对8如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A5cmB1cmC5或1cmD无法确定9木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A两点之间,线段最短B两点确定一条直线C两点之间线段的长度,叫做这两点之间的距离D圆上任意两点间的部分叫做圆弧10如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:MN=HC;MH=(AHHB);MN=(AC+HB);HN=(HC+HB),其中正确的是()ABCD11如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间12线段AB=5厘米,BC=4厘米,那么A,C两点的距离是()A1厘米B9厘米C1厘米或9厘米D无法确定第卷(非选择题)请点击修改第卷的文字说明 评卷人 得 分 二填空题(共7小题)13如图所示,AB+CD AC+BD(填“”,“”或“=”)14如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有 种15 一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示请你探究表内数据间的关系,根据发现的规律,则表中n= 点的个数234567线段的条数1361015n16如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为40cm,若AP=PB,则这条绳子的原长为 cm172005年6月扬州与南京的火车开通,已知火车途中要依停靠两个站点,如果任意两个站点间的票价都不同,那么请你想一想:在这些站点之中,要制作 种不同的票?在这些票中,有 种不同的票价?18直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点19已知线段AD=AB,AE=AC,且BC=6,则DE= 评卷人 得 分 三解答题(共7小题)20如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长21如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点(1)求线段MN的长(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明理由(3)若C在线段AB的延长线上,且满足ACCB=b cm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由22如图,B是线段AD上一动点,沿ADA以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0t10)(1)当t=2时,AB= cm求线段CD的长度(2)用含t的代数式表示运动过程中AB的长(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由23如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由24如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条(1)当线段上有6个点时,线段共有 条;(2)当线段上有n个点时,线段共有 条;(用n的代数式表示)(3)当n=100时,线段共有 条25按下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)经过点O的三条直线a、b、c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q26(1)如图1,一条公路边有三个工厂A、B、C,现要在公路边建造一个货物中转站P,使得这三个工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方? (2)如图2,一条公路边有四个工厂A、B、C、D,现要在公路边建造个货物中转P,使得这四个工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方? (3)如图3,一条公路边有n个工厂A1、A2、A3、An,现要在公路边建造一个货物中转站P,使得这n工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?2017年11月29日138*7530的初中数学组卷参考答案与试题解析一选择题(共12小题)1(2016秋衡阳期末)下列说法正确的是()A直线AB和直线BA是两条直线B射线AB和射线BA是两条射线C线段AB和线段BA是两条线段D直线AB和直线a不能是同一条直线【分析】此题较简单要熟知直线、线段、射线的概念及直线、线段、射线的表示方法【解答】解:A、直线AB和直线BA是同一条直线;B、正确;C、线段AB和线段BA是一条线段;D、直线AB和直线a能是同一条直线故选B【点评】直线:是点在空间内沿相同或相反方向运动的轨迹向两个方向无限延伸线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点2(2016秋上城区期末)有下列生活,生产现象:用两个钉子就可以把木条固定在墙上从A地到B地架设电线,总是尽可能沿着线段AB架设植树时,只要确定两棵树的位置,就能确定同一行树所在的直线把弯曲的公路改直,就能缩短路程其中能用“两点之间,线段最短”来解释的现象有()ABCD【分析】四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断【解答】解:根据两点之间,线段最短,得到的是:;的依据是两点确定一条直线故选C【点评】本题主要考查了定理的应用,正确确定现象的本质是解决本题的关键3(2014徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为3、1,若BC=2,则AC等于()A3B2C3或5D2或6【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算点A、B表示的数分别为3、1,AB=4第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=42=2故选:D【点评】在未画图类问题中,正确画图很重要本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解4(2015黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点若想求出MN的长度,那么只需条件()AAB=12BBC=4CAM=5DCN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,只要已知AB即可故选A【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念利用中点性质转化线段之间的倍分关系是解题的关键5(2016秋灵武市期末)已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A7cmB3cmC7cm或3cmD5cm【分析】本题应考虑到A、B、C三点之间的位置关系的多种可能,即当点C在线段AB上时和当点C在线段AB的延长线上时【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=ACBC=72=5综合上述情况,线段MN的长度是5cm故选D【点评】首先要根据题意,考虑所有可能情况,画出正确图形再根据中点的概念,进行线段的计算6(2008秋临清市期中)A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A4B20C10D9【分析】根据A站到B站之间还有3个车站,首先弄清楚每两个站之间的数量,再根据往返两种车票进行求解【解答】解:如图所示,其中每两个站之间有AC、AD、AE、AB、CD、CE、CB、DE、DB、EB应安排102=20(种)故选B【点评】此题考查了几何在实际生活中的应用,特别注意每两个站之间车票应当是往返两种7(2010秋永康市期末)已知A,B,C三点位于同一条直线上,线段AB=8,BC=5,则AC的长是()A13B3C13或3D以上都不对【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=ABBC,又AB=8,BC=5AC=85=3;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又AB=8,BC=5,AC=8+5=13故选C【点评】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解8(2016秋崆峒区期末)如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A5cmB1cmC5或1cmD无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可【解答】解:如图1,当点B在线段AC上时,AB=6cm,BC=4cm,M,N分别为AB,BC的中点,MB=AB=3,BN=BC=2,MN=MB+NB=5cm,如图2,当点C在线段AB上时,AB=6cm,BC=4cm,M,N分别为AB,BC的中点,MB=AB=3,BN=BC=2,MN=MBNB=1cm,故选:C【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键9(2015秋新泰市期末)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A两点之间,线段最短B两点确定一条直线C两点之间线段的长度,叫做这两点之间的距离D圆上任意两点间的部分叫做圆弧【分析】依据两点确定一条直线来解答即可【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线故选:B【点评】本题主要考查的是直线的性质,掌握直线的性质是解题的关键10(2015秋江汉区期末)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:MN=HC;MH=(AHHB);MN=(AC+HB);HN=(HC+HB),其中正确的是()ABCD【分析】根据线段中点的性质、结合图形计算即可判断【解答】解:H为AC的中点,M为AB的中点,N为BC的中点,AH=CH=AC,AM=BM=AB,BN=CN=BC,MN=MB+BN=(AB+BC)=AC,MN=HC,正确;(AHHB)=(ABBHBH)=MBHB=MH,正确;MN=AC,错误;(HC+HB)=(BC+HB+HB)=BN+HB=HN,正确,故选:B【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键11(2013雨花区校级自主招生)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A点AB点BCA,B之间DB,C之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理【解答】解:以点A为停靠点,则所有人的路程的和=15100+10300=4500(米),以点B为停靠点,则所有人的路程的和=30100+10200=5000(米),以点C为停靠点,则所有人的路程的和=30300+15200=12000(米),当在AB之间停靠时,设停靠点到A的距离是m,则(0m100),则所有人的路程的和是:30m+15(100m)+10(300m)=4500+5m4500,当在BC之间停靠时,设停靠点到B的距离为n,则(0n200),则总路程为30(100+n)+15n+10(200n)=5000+35n4500该停靠点的位置应设在点A;故选A【点评】此题为数学知识的应用,考查知识点为两点之间线段最短12(2014秋大城县期末)线段AB=5厘米,BC=4厘米,那么A,C两点的距离是()A1厘米B9厘米C1厘米或9厘米D无法确定【分析】要确定A,C两点的距离,需要确定C点在哪里【解答】解:点C在线段AB上时,AC=54=1cm,点C在线段AB的延长线上时,AC=5+4=9cm,点C不在直线AB上时,1AC9,所以,A、C两点间的距离为1AC9,故无法确定故选D【点评】由于没有说明AB与BC的位置,故不能确定A,C两点的距离二填空题(共7小题)13(2015秋海淀区期末)如图所示,AB+CDAC+BD(填“”,“”或“=”)【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BEAB,同理得到CE+DEDC,从而得到AB+CDAC+BD【解答】解:如图所示:由两点之间线段最短可知AE+BEAB同理:CE+DEDCAE+BE+CE+DEAB+DCAC+BDAB+DC,即AB+DCAC+BD故答案为:【点评】本题主要考查的是线段的性质,掌握线段的性质是解题的关键14(2009秋南岸区期末)如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有6种【分析】根据题意,结合图形求解即可【解答】解:从A地上面一条路线到C地有2条路线,从A地中间一条路线到C地有2条路线,从A地下面一条路线到C地有2条路线从A地到C地可供选择的方案有23=6种故答案为6【点评】此题在线段的基础上,着重培养学生的观察能力,应注重分类讨论的方法计数,做到不遗漏,不重复15(2005毕节地区)一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示请你探究表内数据间的关系,根据发现的规律,则表中n=21点的个数234567线段的条数1361015n【分析】根据表中数据,寻找规律,列出公式解答【解答】解:设线段有n个点,分成的线段有m条有以下规律:n个m条2 13 1+24 1+2+3n m=1+(n1)=7个点把线段AB共分成=21条【点评】本题体现了“具体抽象具体”的思维探索过程,探索规律、运用规律,有利于培养学生健全的思维能力16(2010秋西城区期末)如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为40cm,若AP=PB,则这条绳子的原长为60或120cm【分析】设AP=xcm,则BP=2xcm,分为两种情况:当含有线段AP的绳子最长时,得出方程x+x=40,当含有线段BP的绳子最长时,得出方程2x+2x=40,求出每个方程的解,代入2(x+2x)求出即可【解答】解:设AP=xcm,则BP=2xcm,当含有线段AP的绳子最长时,x+x=40,解得:x=20,即绳子的原长是2(x+2x)=6x=120(cm);当含有线段BP的绳子最长时,2x+2x=40,解得:x=10,即绳子的原长是2(x+2x)=6x=60(cm);故答案为:60或120【点评】本题考查了两点间的距离的应用,解此题的关键是能根据题意求出符合条件的两个解172005年6月扬州与南京的火车开通,已知火车途中要依停靠两个站点,如果任意两个站点间的票价都不同,那么请你想一想:在这些站点之中,要制作12种不同的票?在这些票中,有6 种不同的票价?【分析】两站之间的往返车票各一种,即两种,n个车站每两站之间有两种,则n个车站的票的种类数=n(n1)种,把n=4代入上式即可求得票的种数,但是票价只有票数【解答】解:两站之间的往返车票各一种,即两种,则4个车站的票的种类数是43=12种,票价有122=6种,即要准备12种不同的车票,有6中不同的票价,故答案为:12,6【点评】本题主要考查排列组合问题,应注重分类讨论的方法计数,做到不遗漏,不重复18(2013安顺)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073个点【分析】根据题意分析,找出规律解题即可【解答】解:第一次:2010+(20101)=220101,第二次:220101+2201011=420103,第三次:420103+4201031=820107经过3次这样的操作后,直线上共有820107=16073个点故答案为:16073【点评】此题为规律型题解题的关键是找对规律19(2009宝山区二模)已知线段AD=AB,AE=AC,且BC=6,则DE=4【分析】在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维画图如下:【解答】解:如图:设AB=3a,AD=2a,那么AC=ABBC=3a6,AE=AC=2a4,DE=ADAE=2a2a+4=4故答案为4【点评】灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题的关键,比较简单三解答题(共7小题)20(2016秋召陵区期末)如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=ACAECF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm点E、点F分别为AB、CD的中点,AE=AB=1.5xcm,CF=CD=2xcmEF=ACAECF=6x1.5x2x=2.5xcmEF=10cm,2.5x=10,解得:x=4AB=12cm,CD=16cm【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想21(2016秋禹州市期末)如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点(1)求线段MN的长(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明理由(3)若C在线段AB的延长线上,且满足ACCB=b cm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由【分析】(1)根据线段中点的定义得到MC=AC=4cm,NC=BC=3cm,然后利用MN=MC+NC进行计算;(2)根据线段中点的定义得到MC=AC,NC=BC,然后利用MN=MC+NC得到MN=acm;(3)先画图,再根据线段中点的定义得MC=AC,NC=BC,然后利用MN=MCNC得到MN=bcm【解答】解:(1)点M、N分别是AC、BC的中点,MC=AC=8cm=4cm,NC=BC=6cm=3cm,MN=MC+NC=4cm+3cm=7cm;(2)MN=acm理由如下:点M、N分别是AC、BC的中点,MC=AC,NC=BC,MN=MC+NC=AC+BC=AB=acm;(3)解:如图,点M、N分别是AC、BC的中点,MC=AC,NC=BC,MN=MCNC=ACBC=(ACBC)=bcm【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离22(2014秋东海县校级期末)如图,B是线段AD上一动点,沿ADA以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0t10)(1)当t=2时,AB=4cm求线段CD的长度(2)用含t的代数式表示运动过程中AB的长(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由【分析】(1)根据AB=2t即可得出结论;先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论【解答】解:(1)B是线段AD上一动点,沿ADA以2cm/s的速度往返运动,当t=2时,AB=22=4cm故答案为:4;AD=10cm,AB=4cm,BD=104=6cm,C是线段BD的中点,CD=BD=6=3cm;(2)B是线段AD上一动点,沿ADA以2cm/s的速度往返运动,当0t5时,AB=2t;当5t10时,AB=10(2t10)=202t;(3)不变AB中点为E,C是线段BD的中点,EC=(AB+BD)=AD=10=5cm【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键23(2013秋金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由【分析】根据线段的性质:两点之间线段最短,即可得出答案【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用24(2016秋高台县期末)如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条(1)当线段上有6个点时,线段共有15条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有4950条【分析】根据每一个点与另外的一个点有一条线段,n个点中每一个点可组成(n1)条线段,n个点可组成,可得答案【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段上有n个点时,线段共有 条;(3)当n=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临床路径管理与护理实践
- 智能家居解决方案采购补充协议
- 留学国家政策动态监测与预警合同
- 2025设备维修保养服务合同范本
- 利华益往年考试题及答案
- 司法考试题及答案
- 美食成分测试题及答案
- 党史的笔试题目及答案
- 河源体育考编试题及答案
- 珠海客服面试题库及答案
- 广州市人力资源和社会保障局事业单位招聘工作人员【共500题附答案解析】模拟检测试卷
- 产品定价和定价策略课程课件
- 镁的理化性质及危险特性表MSDS
- JC-MM-会计核算手册模板(生产制造业)V1
- 顶管工程施工组织设计方案
- 常用数学物理英语词汇
- 2021年浙江省杭州市西湖区杭州绿城育华小学一级下册期末数学试卷
- 国家储备林改培外业调查技术
- 季节热能储存技术现状
- T∕CNEA 001.1-2021 核能行业供应商评价与管理规范 第1部分:合格供应商要求及判定规则
- 贝朗CRRT操作常见报警及处理
评论
0/150
提交评论