2014中考数学压轴题汇编6.doc_第1页
2014中考数学压轴题汇编6.doc_第2页
2014中考数学压轴题汇编6.doc_第3页
2014中考数学压轴题汇编6.doc_第4页
2014中考数学压轴题汇编6.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

61连云港26(本题满分12 分)已知二次函数,其图像抛物线交轴的于点A(1,0)、B(3,0),交y轴于点C.直线过点C,且交抛物线于另一点E(点E不与点A、B重合).(1)求此二次函数关系式;(2)若直线经过抛物线顶点D,交轴于点F,且,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由.(3)若过点A作AG轴,交直线于点G,连OG、BE,试证明OGBE.61连云港62连云港27(本题满分14 分)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在APK、ADK、DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿ABCD的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。 (4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.62连云港63浙江省21.(本题10分)如图,抛物线与轴交于A,B两点,它们的对称轴与轴交于点N,过顶点M作ME轴于点E,连结BE交MN于点F。已知点A的坐标为(-1,0)(1)求该抛物线的解析式及顶点M的坐标;(2)求EMF与BNF的面积之比。63浙江省64浙江省22.(本题8分) 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感。他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明。下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中DAB=90,求证:。证明:连结DB,过点D作BC边上的高DF,则DF=EC=, ,又, , 请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中DAB=90。求证:。证明:连结 又 来源:来源:Zxxk.Com 。64浙江省65浙江省24.(本题14分)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动。以CP,CO为邻边构造PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为秒。(1)当点C运动到线段OB的中点时,求的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MNPE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设PCOD的面积为S。当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的的值;若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围。65浙江省66昆明23如图,在平面直角坐标系中,抛物线与x轴交于点A(,0)、B(4,0)两点,与y轴交于点C。(1) 求抛物线的解析式;(2) 点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动。其中一个点到达终点时,另一个点也停止运动。当PBQ存在时,求运动多少秒使PBQ的面积最大,最多面积是多少?(3) 当PBQ的面积最大时,在BC下方的抛物线上存在点K,使,求K点坐标。OxyCBAPQ66昆明67浙江23.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形” (1)已知:如图1,四边形ABCD是“等对角四边形”,AC,A=70,B=80求C,D的度数 (2)在探究“等对角四边形”性质时: 小红画了一个“等对角四边形”ABCD(如图2),其中ABC=ADC,AB=AD,此时她发现CB=CD成立请你证明此结论;由此小红猜想:“对于任意等对角四边形,当一组邻边相等时,另一组邻边也相等” 你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例(3)已知:在“等对角四边形”ABCD中,DAB=60,ABC=90,AB=5,AD=4求对角线AC的长第23题图1第23题图267浙江68浙江24.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内AE轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD设线段AE的长为,BED的面积为(1)当时,求的值 (2)求关于的函数解析式(3)若时,求的值;当时,设,猜想与的数量关系并证明68浙江69黄石24.(本小题满分9分) 是的中线,将边所在直线绕点顺时针旋转角,交边于点,交射线于点,设, .(1)如图1,当为等边三角形且时证明:;(2)如图2,证明:;(3)如图3,当是上任意一点时(点不与重合),过点的直线交边于,交射线于点,设,猜想: 是否成立?并说明理由.69黄石24(9分)解:(1)证明:在中,在中, , (3分)(2)证明:如图甲,作/交于点,则ACNDBM图甲F 又即(3)如图乙,过作交于,交的延长线于,则,即,由(2)知如图丙,当过点作交的延长线于,交1于,则同理可得70黄石25.(本小题满分10分)如图,在矩形中,把点沿对折,使点落在上的点,已知。.(1)求点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点,且直线是该抛物线的切线,求抛物线的解析式;(3)直线与(2)中的抛物线交于、两点,点的坐标为,求证:为定值(参考公式:在平面直角坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论