



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线中的几个常见类型一、直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。比如: 若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_; 直线ykx1=0与椭圆恒有公共点,则m的取值范围是_;过双曲线的右焦点直线交双曲线于A、B两点,若AB4,则这样的直线有_条;(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线1外一点的直线与双曲线只有一个公共点的情况如下:P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。比如:过点作直线与抛物线只有一个公共点,这样的直线有_过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为_过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有_条过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_二、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。比如:短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A、B两点,则的周长为_;设P是等轴双曲线右支上一点,F1、F2是左右焦点,若,|PF1|=6,则该双曲线的方程为;双曲线的虚轴长为4,离心率e,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A、B两点,且是与等差中项,则_ 已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且,求该双曲线的标准方程;三、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则。特别地焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。比如:过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ABC重心的横坐标为_四、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。比如:如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是已知直线y=x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x2y=0上,则此椭圆的离心率为_试确定m的取值范围,使得椭圆上有不同的两点关于直线对称你了解下列常用结论吗?(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,0)。如与双曲线有共同的渐近线,且过点的双曲线方程为_(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025网络文学IP全产业链开发中的IP衍生品设计与营销策略报告
- 2025北京中医药大学东方医院秦皇岛医院选聘19人(河北)考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年新能源行业质量认证中的区块链技术应用报告
- 2025-2030工业软件市场发展趋势与竞争格局分析报告
- 2025-2030工业软件SaaS化转型面临的定制化需求矛盾分析报告
- 2025-2030工业自动化控制系统信息安全防护体系建设趋势分析
- 2025-2030工业级防爆指纹识别设备特殊应用场景市场机会研究
- 2025-2030工业级指纹采集仪耐候性测试与质量提升方案
- 2025-2030工业级3D打印设备技术瓶颈与突破路径研究报告
- 2025-2030工业窑炉脱硝技术路线成本效益比较
- 2025年迎中秋节庆国庆节主题班会课件
- 摄影设备租赁平台的市场潜力与趋势-洞察及研究
- 第2课《中国人首次进入自己的空间站》课件+2025-2026学年统编版语文八年级上册
- 私营医院市场营销部升职晋升管理体系
- 2025至2030中国铷/铯及其化合物行业项目调研及市场前景预测评估报告
- 国库账户管理办法
- 工装租借管理办法
- JG/T 296-2010空气吹淋室
- T/CBMCA 020-2021地铺石瓷砖
- 2025年青岛市局属公办高中自主招生化学试卷试题(含答案解析)
- 高级日语(一)(含课后习题参考答案)
评论
0/150
提交评论