函数与函数的零点知识点总结.doc_第1页
函数与函数的零点知识点总结.doc_第2页
函数与函数的零点知识点总结.doc_第3页
函数与函数的零点知识点总结.doc_第4页
函数与函数的零点知识点总结.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档函数及函数的零点有关概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域要点一:函数三要素及分段函数(一)函数三要素1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。1.1求函数的定义域时从以下几个方面入手:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数中. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义.(9)以上这些在题目中都没出现,则函数的定义域为R.1.2复合函数定义域的求法:复合函数:如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 (1)已知f(x)的定义域是a,b,求fg(x)的定义域,是指满足的x的取值范围;(2)已知fg(x)的定义域是a,b,求f(x)的定义域,是指在的条件下,求g(x)的值域;(3) 已知fg(x)的定义域是a,b,求fh(x)的定义域,是指在的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x即可。2).求函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法3).值域 : 先考虑其定义域3.1求函数值域的常用方法1、图像法;2、层层递进法;3、分离常数法;4、换元法;5、单调性法;6、判别式法;7、有界性;8、奇偶性法;9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集3.3复合函数的值域(二)分段函数问题1:已知定义域求值域问题(代入法)2:已知定义域求值域问题(代入法)3.分段函数解析式的求法要点2函数的性质(一)函数的单调性(局部性质):1).函数单调性的判定(A) 定义法:定义1:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间。等价定义:设那么:上是增函数;上是减函数.定义2设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.(B)图象法(从图象上看升降)2.函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x10)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.要点3函数的图象1.解决该类问题要熟练掌握基本初等函数的图象和性质,善于利用函数的性质来作图,要合理利用图象的三种变换2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究(一)图像变换问题(1) 画法A、描点法:B、图象变换法常用变换方法有三种:1)平移变换;2)伸缩变换;3)对称变换;(二)图像识别问题要点4二次函数(一)闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a0时,若,则;,.(2)当a1,且*u 负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,当是偶数时,2分数指数幂正数的分数指数幂的意义,规定:,u 0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1);(2);(3)(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a10a10a1定义域x0定义域x0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴要点6函数模型的实际应用解决函数模型的实际应用题,首先应考虑该题考查的是何种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答明确下面的基本解题步骤是解题的必要基础:收集数据画散点图选择函数模型求函数模型用函数模型解释实际问题符合实际不符合实际检验要点7函数零点1.函数零点(方程的根)的确定问题,常见的类型有(1)零点或零点存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定;解决这类问题的常用方法有:解方程法、利用零点存在的判定或数形结合法,尤其是那些方程两端对应的函数类型不同的方程多以数形结合法求解。2函数零点(方程的根)的应用问题,即已知函数零点的存在情况求参数的值或取值范围问题,解决该类问题关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解。3.用二分法求函数零点近似值,用二分法求函数零点近似值的步骤(1)确定区间a,b,验证f(a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论