




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长沙市中考数学试题压轴题总汇1、(本题满分10分)【2008】如图,六边形ABCDEF内接于半径为r(常数)的O,其中AD为直径,且AB=CD=DE=FA.(1)当BAD=75时,求的长;(2)求证:BCADFE;ABCDEFO(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.2、(本题满分10分)【2009】如图,二次函数()的图象与轴交于两点,与轴相交于点连结两点的坐标分别为、,且当和时二次函数的函数值相等(1)求实数的值;(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由yOxCNBPMA3、(本题满分10分)【2010】如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动设运动时间为t秒(1)用t的式子表示OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;BAPxCQOy第26题图(3)当OPQ与PAB和QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比4、(本题满分10分)【2011】26如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ当点P运动到原点O处时,记Q的位置为B.(第26题)(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由5、(本题满分10分)【2012】如图半径分别为m,n 的两圆O1和O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,O1与x轴,y轴分别切于点M,点N,O2与x轴,y轴分别切于点R,点H。(1)求两圆的圆心O1,O2所在直线的解析式;(2)求两圆的圆心O1,O2之间的距离d;(3)令四边形PO1QO2的面积为S1, 四边形RMO1O2的面积为S2.试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为的抛物线?若存在,亲、请求出此抛物线的解析式;若不存在,请说明理由。6、(本题满分10分)【2007】如图,平行四边形ABCD中,AB=4,BC=3,BAD=120,E为BC上一动点(不与B重合),作EFAB于F,FE,DC的延长线交于点G,设BE=x,DEF的面积为S(1)求证:BEFCEG;(2)求用x表示S的函数表达式,并写出x的取值范围;(3)当E运动到何处时,S有最大值,最大值为多少?7、(本题满分10分)【2006】如图1,已知直线与抛物线交于两点(1)求两点的坐标;(2)求线段的垂直平分线的解析式;(3)如图2,取与线段等长的一根橡皮筋,端点分别固定在两处用铅笔拉着这根橡皮筋使笔尖在直线上方的抛物线上移动,动点将与构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点的坐标;如果不存在,请简要说明理由PA图2图1、(本题满分10分)【2005】9、(本题满分10分)【2004】已知两点O(0,0)、B(0,2),A过点B且与x轴分别相交于点O、C,A被y轴分成段两圆弧,其弧长之比为3:1,直线l与A切于点O,抛物线的顶点在直线l上运动(1)求A的半径;(2)若抛物线经过O、C两点,求抛物线的解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年三异丙醇胺项目规划申请报告
- 2025年节能设备项目申请报告范文
- 2025年智慧停车项目立项申请报告范文
- 外架作业人员安全培训课件
- 2025年中国豆卷数据监测研究报告
- 医护关系模式类型总结
- 燃气输配场站运行工中秋节后复工安全考核试卷含答案
- 陶瓷烧成工国庆节后复工安全考核试卷含答案
- 拿房合同(标准版)
- 数学课堂教学观察与反馈记录表
- 中介招聘合同范例
- 医学免疫学+医学心理学 医学免疫学课程讲义
- 2025年临床医师定期考核必考复习题库及答案(900题)
- 原材料验收管理制度内容
- 《中国美术简史》课件
- 环卫车辆驾驶员安全培训
- 大客户销售工作规划及思路
- 京东方校园2024招聘胜任力测评题库
- 中建营盘山隧道2号斜井泄水专项施工方案
- CAD教程-AutoCAD2024全套教程
- 机房动力环境监控系统调试自检报告
评论
0/150
提交评论