人教A版选修11 3.4生活中的优化问题举例 课件(28张).ppt_第1页
人教A版选修11 3.4生活中的优化问题举例 课件(28张).ppt_第2页
人教A版选修11 3.4生活中的优化问题举例 课件(28张).ppt_第3页
人教A版选修11 3.4生活中的优化问题举例 课件(28张).ppt_第4页
人教A版选修11 3.4生活中的优化问题举例 课件(28张).ppt_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 4生活中的优化问题举例 1 优化问题在实际生产生活中 求利润最大 用料最省 效率最高等问题 通常称为优化问题 2 解决优化问题的基本思路 名师点拨解决实际优化问题的一般步骤 1 认真阅读理解关于实际问题的材料 一般地 实际问题的材料都非常多 信息量较大 涉及的量也比较多 因此需要认真地 细心地阅读题目 发现其中有用的信息 揭示其数学本质 2 在理解题意的基础上 建立数学模型 把要解决的实际问题转化为数学问题 建立相应的函数关系式 3 针对数学模型 设计解决方案 用导数解决函数问题 同时要注意实际问题中变量的取值范围 即函数的定义域 4 根据数学问题的答案去回答实际问题中的优化问题 做一做 有矩形铁板 其长为6 宽为4 现从四个角上剪掉边长为x的四个小正方形 将剩余部分折成一个无盖的长方体盒子 要使容积最大 则x 思考辨析判断下列说法是否正确 正确的在后面的括号内打 错误的打 1 生活中的实际优化问题必须利用导数解决 2 在解决实际优化问题时 若函数只有一个极值点 则极值点就是最值点 3 求解实际优化问题时 必须考虑变量的实际意义 从而确定其取值范围 答案 1 2 3 探究一 探究二 探究三 思维辨析 利润 收益 最大问题 思路点拨 由于投入的成本与x的不同取值范围有关 所以应该用分段函数表示利润函数 然后利用导数分段求解 求得最大值 探究一 探究二 探究三 思维辨析 l x 在 80 100 上单调递增 l x max l 100 1000ln100 2000 1000ln50 250 1000ln100 2000 1750 1000ln2 1750 1000 0 当x 50 即年产量为50000吨时 利润最大 最大利润为 1000ln50 250 万元 探究一 探究二 探究三 思维辨析 反思感悟利用导数解决利润 收益 最大问题 关键是灵活运用题设条件 建立利润 收益 的函数解析式 然后再利用导数方法求出该函数的最大值 即可得到最大利润 收益 常见的基本等量关系如下 1 利润 收益 收入 成本 2 利润 收益 每件产品的利润 收益 销售量 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 面积与体积最大 小 问题 例2 某地政府为科技兴市 欲将如图所示的一块不规则的非农业用地规划建成一个矩形高科技工业园区 已知ab bc oa bc ab bc 2oa 4km 曲线段oc是以点o为顶点且开口向右的抛物线的一段 如果要使矩形的相邻两边分别落在ab bc上 且一个顶点落在曲线段oc上 问应如何规划才能使矩形工业园区的用地面积最大 并求出最大用地面积 精确到0 1km2 探究一 探究二 探究三 思维辨析 思路点拨 首先应建立平面直角坐标系 求出抛物线段的方程 然后设出曲线段co上顶点p的坐标 将矩形面积用p点坐标表示 最后用导数求其最大值 自主解答 以o为坐标原点 oa所在直线为y轴 以o点到bc的垂线为x轴建立直角坐标系 图略 设矩形落在曲线段oc上的一个顶点为p 抛物线方程为y2 2px p 0 把点c 4 2 代入y2 2px p 0 得4 8p 得 y2 x 0 x 4 0 y 2 令p t2 t 0 t 2 记工业园区的用地面积为skm2 则s 4 t2 t 2 t3 2t2 4t 8 0 t 2 s 3t2 4t 4 t 2 3t 2 探究一 探究二 探究三 思维辨析 反思感悟求面积与体积的最值问题是实际生产生活中的常见问题 解决这类问题的关键是熟练掌握相关的面积 体积公式 能够依据题意确定出自变量的取值范围 建立准确的函数关系式 然后利用导数的方法加以解决 必要时 可选择建立坐标系 通过点的坐标建立函数关系式或曲线方程 以便于问题的解决 探究一 探究二 探究三 思维辨析 变式训练2要做一个圆锥形的漏斗 其母线长为20cm 要使其体积最大 则高为多少 探究一 探究二 探究三 思维辨析 费用 用料 最省问题 例3 现有一批货物由海上从a地运往b地 已知轮船的最大航行速度为35海里 时 a地到b地之间的航行距离约为500海里 每小时的运输成本由燃料费和其余费用组成 轮船每小时的燃料费与轮船速度的平方成正比 比例系数为0 6 其余费用为每小时960元 1 把全程运输成本y 元 表示为速度x 海里 时 的函数 2 为了使全程运输成本最小 轮船应以多大速度航行 思路点拨 1 写出函数解析式时要注意函数的定义域 2 利用导数求最值 注意函数定义域的限制 探究一 探究二 探究三 思维辨析 反思感悟用料最省 造价最低类问题的求解思路是找到变量之间的关系 借助关系建立函数关系式 然后借助导数予以求解 解题过程中要注意函数定义域的限制 探究一 探究二 探究三 思维辨析 变式训练3为了在夏季降温和冬季供暖时减少能源损耗 房屋的屋顶和外墙需要建造隔热层 某幢建筑物要建造可使用20年的隔热层 每厘米厚的隔热层建造成本为6万元 该建筑物每年的能源消耗费用c 单位 万元 与隔热层厚度x 单位 cm 满足关系 0 x 10 若不建隔热层 每年能源消耗费用为8万元 设f x 为隔热层建造费用与20年的能源消耗费用之和 1 求k的值及f x 的表达式 2 隔热层修建多厚时 总费用f x 达到最小 并求最小值 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 忽视实际问题中变量的取值范围致误 典例 某厂生产一种机器 其固定成本 即固定投入 为0 5万元 但每生产100台 需要增加可变成本 即另增加投入 0 25万元 市场对此产品的年需求量为500台 销售收入 单位 万元 函数为 r x 0 x 5 其中x是产品售出的数量 单位 百台 1 把利润y表示为年产量的函数 2 年产量是多少时 工厂所得利润最大 易错分析 本题常见错误是忽视对年产量x的讨论 由于市场对该产品的年需求量为500台 所以当年产量x大于500台时 利润与x的关系不同于当年产量x小于500台时 应使用分段函数表示 分段求解 探究一 探究二 探究三 思维辨析 纠错心得在利用导数解决实际优化问题时 要注意对问题中变量取值范围的分析 应结合实际意义确定变量的取值范围 在变量的可取值范围内解决最值问题 探究一 探究二 探究三 思维辨析 跟踪训练已知a b两地相距200千米 一只船从a地逆水到b地 水速为8千米 时 船在静水中的速度为v千米 时 8 v v0 v0为船在静水中的最大速度 若船每小时的燃料费与其在静水中的速度的平方成正比 当v 12千米 时 每小时的燃料费为720元 为了使全程燃料费最省 船在静水中的速度v应为多少 探究一 探究二 探究三 思维辨析 1 2 3 4 1 某一件商品的成本为30元 在某段时间内 若以每件x元出售 可卖出 200 x 件 则当每件商品的定价为多少元时 利润最大 a 105b 110c 115d 120解析 利润为s x x 30 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论