




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.圆锥曲线(三)-双曲线知识点一:双曲线定义平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线即:。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);若常数满足约束条件:,则动点轨迹不存在;5若常数,则动点轨迹为线段F1F2的垂直平分线。知识点二:双曲线的标准方程1当焦点在轴上时,双曲线的标准方程:,其中;2当焦点在轴上时,双曲线的标准方程:,其中.注意: 1只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2在双曲线的两种标准方程中,都有;3双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线性质1、双曲线(a0,b0)的简单几何性质(1) 对称性:对于双曲线标准方程(a0,b0),把x换成x,或把y换成y,或把x、y同时换成x、y,方程都不变,所以双曲线(a0,b0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。(2)范围:双曲线上所有的点都在两条平行直线x=a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x-a或xa。(3) 顶点:双曲线与它的对称轴的交点称为双曲线的顶点。双曲线(a0,b0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。注意:双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。双曲线的焦点总在实轴上。实轴和虚轴等长的双曲线称为等轴双曲线。(4)离心率: 双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。因为ca0,所以双曲线的离心率。由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。等轴双曲线,所以离心率。(4) 渐近线:经过点A2、A1作y轴的平行线x=a,经过点B1、B2作x轴的平行线y=b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是。我们把直线叫做双曲线的渐近线。双曲线的渐近线求法:(1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为注意:(1)已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。(2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。(3)与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,焦点在y轴上)(4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.注意:双曲线与它的渐近线无限接近,但永不相交。知识点四:双曲线与的区别和联系焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于原点中心对称离心率渐近线方程2、实轴和虚轴等长的双曲线称为等轴双曲线巩固练习1、已知点P(x,y)的坐标满足,则动点P的轨迹是( )A椭圆 B双曲线中的一支 C两条射线 D以上都不对 2、求与双曲线有公共焦点,且过点的双曲线的标准方程。3已知双曲线的两个焦点F1、F2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的标准方程。总结升华:求双曲线的标准方程就是求a2、b2的值,同时还要确定焦点所在的坐标轴。双曲线所在的坐标轴,不像椭圆那样看x2、y2的分母的大小,而是看x2、y2的系数的正负。4方程表示双曲线,求实数m的取值范围。【变式1】k9是方程表示双曲线的( )A充分必要条件 B充分不必要条件 C必要不充分条件 D既不充分又不必要条件【变式2】求双曲线的焦距。【变式3】已知双曲线8kx2ky2=2的一个焦点为,则k的值等于( )A2 B1 C1 D【变式4】(2011 湖南)设双曲线的渐近线方程为,则的值为A4 B3 C2 D15已知双曲线方程,求渐近线方程。(1);(2);(3);(4)6根据下列条件,求双曲线方程。(1)与双曲线有共同的渐近线,且过点;(2)一渐近线方程为,且双曲线过点。总结升华:求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、及准线)之间的关系,并注意方程思想的应用。若已知双曲线的渐近线方程,可设双曲线方程为().【变式1】中心在原点,一个焦点在(0,3),一条渐近线为的双曲线方程是( )A、 B、C、 D、【变式2】过点(2,-2)且与双曲线有公共渐进线的双曲线是 ( )AB CD【答案】A 【变式3】以为渐近线的双曲线方程不可能是( )A4x29y2=1 B9y24x2=1 C4x29y2=(R且0) D9x24y2=(R且0)【变式4】双曲线与有相同的( )A实轴 B焦点 C渐近线 D以上都不对 7已知是双曲线的左、右焦点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石家庄租车合同中车辆损坏赔偿责任划分及处理办法
- 离婚时夫妻共同房产分割与子女抚养费用分担合同范本
- 互联网保险合同的法律监管与风险防范
- 离婚协议中关于债权处理及财产分割的专项合同
- 城市物流货车驾驶员聘用与最后一公里配送服务合同
- 2025年民族团结共进高等教育试题库及解析
- 2025年职业技能鉴定资格考试试卷及答案
- 2025年国学知识竞赛题库及答案
- 委托缴税协议书
- 维修保养服务合同范本
- 粉尘涉爆安全培训考试题及答案
- 力量国际礼仪培训课件
- 危化品经营安全培训管理课件
- 交通安全应急处置预案公司
- 工商业分布式屋顶光伏项目投资分析
- 用户侧储能系统调度平台创新创业项目商业计划书
- 药厂生产管理培训课件
- 2021-2025年高考地理真题知识点分类汇编之地球的运动
- 2025海南国考时政试题及答案
- 小学数学课堂教学提问的教学策略讲座稿
- 2025年医院院感科医院感染试题及答案
评论
0/150
提交评论