高考物理一轮复习 第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用学案.doc_第1页
高考物理一轮复习 第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用学案.doc_第2页
高考物理一轮复习 第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用学案.doc_第3页
高考物理一轮复习 第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用学案.doc_第4页
高考物理一轮复习 第六章 动量和动量守恒定律 第2讲 动量守恒定律及应用学案.doc_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲动量守恒定律及应用微知识1 动量守恒定律1内容:如果系统不受外力,或者所受外力的合力为零,这个系统的总动量保持不变。2常用的四种表达形式(1)pp,即系统相互作用前的总动量p和相互作用后的总动量p大小相等,方向相同。(2)ppp0,即系统总动量的增量为零。(3)p1p2,即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量。(4)m1v1m2v2m1v1m2v2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等。3常见的几种守恒形式及成立条件(1)理想守恒:系统不受外力或所受外力的合力为零。(2)近似守恒:系统所受外力虽不为零,但内力远大于外力。(3)分动量守恒:系统所受外力虽不为零,但在某方向上合力为零,系统在该方向上动量守恒。微知识2 碰撞1碰撞现象:两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程。2碰撞特征(1)作用时间短。(2)作用力变化快。(3)内力远大于外力。(4)满足动量守恒。3碰撞的分类及特点(1)弹性碰撞:动量守恒,机械能守恒。(2)非弹性碰撞:动量守恒,机械能不守恒。(3)完全非弹性碰撞:动量守恒,机械能损失最多。微知识3 爆炸现象爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒。微知识4 反冲运动1物体的不同部分在内力作用下向相反方向运动的现象。2反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。一、思维辨析(判断正误,正确的画“”,错误的画“”。)1动量守恒定律中的速度是相对于同一参考系的速度。()2质量相等的两个物体发生碰撞时,一定交换速度。()3系统的总动量不变是指系统总动量的大小保持不变。()4系统的动量守恒时,机械能也一定守恒。()二、对点微练1(动量守恒条件)(多选)如图所示,在光滑水平面上有a、b两个木块,a、b之间用一轻弹簧连接,a靠在墙壁上,用力f向左推b使两木块之间的弹簧压缩并处于静止状态。若突然撤去力f,则下列说法中正确的是()a木块a离开墙壁前,a、b和弹簧组成的系统动量守恒,机械能也守恒b木块a离开墙壁前,a、b和弹簧组成的系统动量不守恒,但机械能守恒c木块a离开墙壁后,a、b和弹簧组成的系统动量守恒,机械能也守恒d木块a离开墙壁后,a、b和弹簧组成的系统动量不守恒,但机械能守恒解析木块a离开墙壁前,由a、b和弹簧组成的系统受墙壁的弹力,属于外力,故系统动量不守恒,但机械能守恒,故选项a错,b对;木块a离开墙壁后,由a、b和弹簧组成的系统所受合外力为零,故系统动量守恒,又没有机械能和其他形式的能量转化,故机械能也守恒,故选项c对,d错。答案bc2(动量守恒定律)如图所示,用细线挂一质量为m的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为v0和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为()a.b.c.d.解析子弹和木块水平方向动量守恒,mv0mvmv,由此知v,故b项正确。答案b3(碰撞)两球a、b在光滑水平面上沿同一直线、同一方向运动,ma1 kg,mb2 kg,va6 m/s,vb2 m/s。当a追上b并发生碰撞后,两球a、b速度的可能值是()ava5 m/s,vb2.5 m/sbva2 m/s,vb4 m/scva4 m/s,vb7 m/sdva7 m/s,vb1.5 m/s解析虽然题中四个选项均满足动量守恒定律,但a、d两项中,碰后a的速度va大于b的速度vb,必然要发生第二次碰撞,不符合实际;c项中,两球碰后的总动能ekmava2mbvb257 j,大于碰前的总动能ek22 j,违背了能量守恒定律;而b项既符合实际情况,也不违背能量守恒定律,故b项正确。答案b4(爆炸和反冲)将静止在地面上,质量为m(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是()a.v0b.v0c.v0d.v0解析根据动量守恒定律mv0(mm)v,得vv0,选项d正确。答案d见学生用书p095微考点1动量守恒定律的应用核|心|微|讲1动量守恒定律适用条件(1)前提条件:存在相互作用的物体系。(2)理想条件:系统不受外力。(3)实际条件:系统所受合外力为零。(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力。(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。2动量守恒定律与机械能守恒定律的比较3应用动量守恒定律的解题步骤典|例|微|探【例1】如图所示,光滑水平轨道上有三个木块a、b、c,质量分别为ma3m、mbmcm,开始时b、c均静止,a以初速度v0向右运动,a与b相撞后分开,b又与c发生碰撞并粘在一起,此后a与b间的距离保持不变。求b与c碰撞前b的速度大小。【解题导思】(1)a、b碰撞过程中,a、b组成的系统动量守恒吗?答:守恒。(2)题中的“此后a、b间距离保持不变”说明了什么?答:最终a、b、c三个木块的速度相同。解析设a与b碰撞后,a的速度为va,b与c碰撞前b的速度为vb,b与c碰撞后粘在一起的速度为v,由动量守恒定律得对a、b木块:mav0mavambvb,对b、c木块:mbvb(mbmc)v,由最后a与b间的距离保持不变可知vav,联立式,代入数据得vbv0。答案v0题|组|微|练1如图所示,水平光滑地面上依次放置着质量均为m0.08 kg的10块完全相同的长直木板。质量m1.0 kg、大小可忽略的小铜块以初速度v06.0 m/s从长木板左端滑上木板,当铜块滑离第一块木板时,速度大小为v14.0 m/s,铜块最终停在第二块木板上。g取10 m/s2,结果保留两位有效数字。求:(1)第一块木板的最终速度。(2)铜块的最终速度。解析(1)铜块在第一块木板上滑动的过程中,由动量守恒得mv0mv110mv2,得v22.5 m/s。(2)铜块从滑上第一块木板到停在第二块木板上,满足动量守恒mv0mv2(m9m)v3,得v33.4 m/s。答案(1)2.5 m/s(2)3.4 m/s2如图所示,光滑水平轨道上放置长木板a(上表面粗糙)和滑块c,滑块b置于a的左端,三者质量分别为ma2 kg、mb1 kg、mc2 kg。开始时c静止,a、b一起以v05 m/s的速度匀速向右运动,a与c发生碰撞(时间极短)后c向右运动,经过一段时间,a、b再次达到共同速度一起向右运动,且恰好不再与c碰撞。求a与c发生碰撞后瞬间a的速度大小。解析因碰撞时间极短,a与c碰撞过程动量守恒,设碰后瞬间a的速度为va,c的速度为vc,以向右为正方向,由动量守恒定律得mav0mavamcvc,a与b在摩擦力作用下达到共同速度,设共同速度为vab,由动量守恒定律得mavambv0(mamb)vab,a与b达到共同速度后恰好不再与c碰撞,应满足vabvc,联立以上各式,代入数据得va2 m/s。答案2 m/s微考点2碰撞问题核|心|微|讲1碰撞过程中动量守恒,即p1p2p1p2。2碰撞后系统总动能不增加,即ek1ek2ek1ek2,或。3碰撞过程中发生的情况必须符合客观实际,如果甲追上乙并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于或等于乙的速度,或甲反向运动。如果碰前甲、乙是相向运动,则碰后甲、乙的运动方向不可能都不改变,除非甲、乙碰撞后速度均为零。典|例|微|探【例2】(多选)如图所示,光滑水平面上有大小相同的a、b两球在同一直线上运动。两球质量关系为mb2ma,规定向右为正方向,a、b两球的动量均为6 kg m/s,运动中两球发生碰撞,碰撞后a球的动量增量为4 kgm/s,则()a该碰撞为弹性碰撞b该碰撞为非弹性碰撞c左方是a球,碰撞后a、b两球速度大小之比为25d右方是a球,碰撞后a、b两球速度大小之比为110【解题导思】(1)a、b两球,谁的速度更大些?答:a球的速度更大些。(2)如何分析碰撞是否是弹性碰撞?答:计算碰撞前的动能和碰撞后的动能的关系即可判断出结果。解析由mb2ma,papb知碰前vbva,若右方为a球,由于碰前动量都为6 kg m/s,即都向右运动,两球不可能相碰;若左方为a球,设碰后二者速度分别为va、vb,由题意知pamava2 kg m/s,pbmbvb10 kg m/s,解得。碰撞后a球动量变为2 kg m/s,b球动量变为10 kg m/s,又mb2ma,由计算可知碰撞前后a、b两球动能之和不变,即该碰撞为弹性碰撞,选项a、c正确。答案ac【反思总结】碰撞问题的解题策略1抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。2可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v1v0、v2v0。3熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m1m2,且v200时,碰后质量大的速率不变,质量小的速率为2v0;当m1m2,且v200时,碰后质量小的球原速率反弹。题|组|微|练3(多选)(2018湖南师大附中摸底考试)质量为m,速度为v的a球跟质量为3m的静止的b球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此碰撞后b球的速度可能值为()a0.6v b0.4vc0.3v d0.2v解析若发生的是完全非弹性碰撞:mv4mv1v10.25v,若发生的是弹性碰撞:可得b球的速度v20.5v,即0.25vv0.5v,故b、c项正确。答案bc4如图,在足够长的光滑水平面上,物体a、b、c位于同一直线上,a位于b、c之间。a的质量为m,b、c的质量都为m,三者均处于静止状态。现使a以某一速度向右运动,求m和m之间应满足什么条件,才能使a只与b、c各发生一次碰撞。设物体间的碰撞都是弹性的。解析a向右运动与c发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒。设速度方向向右为正,开始时a的速度为v0,第一次碰撞后c的速度为vc1,a的速度为va1,由动量守恒定律和机械能守恒定律得mv0mva1mvc1,mvmvmv,联立式得va1v0,vc1v0。如果mm,第一次碰撞后,a与c速度同向,且a的速度小于c的速度,不可能与b发生碰撞;如果mm,第一次碰撞后,a停止,c以a碰前的速度向右运动,a不可能与b发生碰撞;所以只需考虑mm的情况。第一次碰撞后,a反向运动与b发生碰撞。设与b发生碰撞后,a的速度为va2,b的速度为vb1,同样有va2va12v0,根据题意,要求a只与b、c各发生一次碰撞,应有va2vc1,联立式得m24mmm20,解得m(2)m。另一个解m(2)m舍去。所以,m和m应满足的条件为(2)mmm。答案(2)mmm微考点3动量和能量的综合问题核|心|微|讲利用动量和能量观点解题的技巧1若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。2若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。3因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。特别对于变力做功问题,就更显示出它们的优越性。典|例|微|探【例3】在粗糙的水平桌面上有两个静止的木块a和b,两者相距为d。现给a一初速度,使a与b发生弹性正碰,碰撞时间极短。当两木块都停止运动后,相距仍然为d。已知两木块与桌面之间的动摩擦因数均为,b的质量为a的2倍,重力加速度大小为g。求a的初速度的大小。【解题导思】(1)a、b碰撞的过程中满足动量守恒条件吗?答:满足,因碰撞过程时间极短,碰撞力很大,能够满足内力远远大于外力的条件。(2)碰撞前后两木块做什么运动?哪些力在做功?答:均做匀减速直线运动,摩擦力做功使其动能减小。解析设在发生碰撞前的瞬间,木块a的速度大小为v;在碰撞后的瞬间,a和b的速度分别为v1和v2。在碰撞过程中,由能量和动量守恒定律,得mv2mv(2m)v,mvmv1(2m)v2,式中,以碰撞前木块a的速度方向为正。由式得v1,设碰撞后a和b运动的距离分别为d1和d2,由动能定理得mgd1mv,(2m)gd2(2m)v,按题意有dd1d2。设a的初速度大小为v0,由动能定理得mgdmvmv2,联立式,得v0。答案题|组|微|练5如图所示,质量为m10.2 kg的小物块a,沿水平面与小物块b发生正碰,小物块b的质量为m21 kg。碰撞前,a的速度大小为v03 m/s,b静止在水平地面上。由于两物块的材料未知,将可能发生不同性质的碰撞,已知a、b与地面间的动摩擦因数均为0.2,重力加速度g取10 m/s2,试求碰后b在水平面上滑行的时间。解析假如两物块发生的是完全非弹性碰撞,碰后的共同速度为v1,则由动量守恒定律有m1v0(m1m2)v1,碰后,a、b一起滑行直至停下,设滑行时间为t1,则由动量定理有(m1m2)gt1(m1m2)v1,解得t10.25 s。假如两物块发生的是弹性碰撞,碰后a、b的速度分别为va、vb,则由动量守恒定律有m1v0m1vam2vb,由机械能守恒有m1vm1vm2v,设碰后b滑行的时间为t2,则m2gt2m2vb,解得t20.5 s。可见,碰后b在水平面上滑行的时间t满足025 st0.5 s。答案0.25 st0.5 s6质量为mb2 kg的木板b静止于光滑水平面上,质量为ma6 kg的物块a停在b的左端,质量为mc2 kg的小球c用长为l0.8 m的轻绳悬挂在固定点o。现将小球c及轻绳拉直至水平位置后由静止释放,小球c在最低点与a发生正碰,碰撞作用时间很短为t102 s,之后小球c反弹所能上升的最大高度h0.2 m。已知a、b间的动摩擦因数0.1,物块与小球均可视为质点,不计空气阻力,g取10 m/s2。求:(1)小球c与物块a碰撞过程中所受的撞击力大小。(2)为使物块a不滑离木板b,木板b至少多长。解析(1)小球c下摆过程,由动能定理:mcglmcv,小球c反弹过程,由动能定理:mcgh0mcv,碰撞过程,根据动量定理:ftmc(vc)mcvc,联立以上各式解得f1.2103 n。(2)小球c与物块a碰撞过程,由动量守恒定律:mcvcmc(vc)mava,当物块a恰好滑至木板b右端并与其共速时,所求木板b的长度最小。此过程,由动量守恒定律:mava(mamb)v,由能量守恒定律:magxmav(mamb)v2,联立以上各式解得x0.5 m。答案(1)1.2103 n(2)0.5 m见学生用书p097 “人船模型”素能培养“人船模型”是初态均处于静止状态的两物体发生相互作用的典型模型。1模型概述在水平方向所受合外力为零的两个静止物体(一个物体在另一个物体上),在系统内力的相互作用下同时开始反向运动,这样的力学系统可看作“人船”模型。2模型特点两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止,遵从动量守恒定律,系统或每个物体动能均发生变化:力对“人”做的功等于“人”动能的变化;力对“船”做的功等于“船”动能的变化。经典考题如图所示,长为l、质量为m的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析当人从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v2,船对地的速度为v1,则mv2mv10,即v2/v1m/m。在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv2tmv1t0,即ms2ms10,而s1s2l,所以s1l,s2l。答案s1l,s2l对法对题1如图所示,长20 m的木板ab的一端固定一竖立的木桩,木桩与木板的总质量为10 kg,将木板放在动摩擦因数为0.2的粗糙水平面上,一质量为40 kg的人从静止开始以a14 m/s2的加速度从b端向a端跑去,到达a端后在极短时间内抱住木桩(木桩的粗细不计),求:(1)人刚到达a端时木板移动的距离。 (2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?(g取10 m/s2)解析(1)由于人与木板组成的系统在水平方向上受的合力不为零,故不遵守动量守恒。设人对地的位移为s1,木板对地的位移为s2,木板移动的加速度为a2,人与木板的摩擦力为f,由牛顿定律得fma1160 n;a2 m/s26.0 m/s2。设人从b端运动到a端所用的时间为t,则s1a1t2, s2a2t2;s1s220 m,由以上各式解得t2.0 s,s212 m。(2)解法一:设人运动到a端时速度为v1,木板移动的速度为v2,则v1a1t8.0 m/s, v2a2t12.0 m/s,由于人抱住木桩的时间极短,在水平方向系统动量守恒,取人的方向为正方向,则mv1mv2(mm)v,得v4.0 m/s。由此断定人抱住木桩后,木板将向左运动。由动能定理得(mm)gs(mm)v2解得s4.0 m。解法二:对木板受力分析,木板受到地面的摩擦力向左,故产生向左的冲量,因此,人抱住木桩后,系统将向左运动。由系统动量定理得(mm)gt(mm)v,解得v4.0 m/s,由动能定理得(mm)gs(mm)v2,解得s4.0 m。答案(1)12 m(2)4.0 m2如图所示,质量为m、半径为r的小球,放在半径为2r,质量为2m的大空心球内。大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低点时,大球移动的距离是多少?解析设小球相对于地面移动的距离为s1,大球相对于地面移动的距离为s2。下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论