回归直线方程—最小二乘法.ppt_第1页
回归直线方程—最小二乘法.ppt_第2页
回归直线方程—最小二乘法.ppt_第3页
回归直线方程—最小二乘法.ppt_第4页
回归直线方程—最小二乘法.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

问题 在一次对人体脂肪含量与年龄关系的研究中 研究人员获得了一组样本数据 回归直线概念 散点图中心的分布从整体上看大致是一条直线附近 该直线称为回归直线 求出回归直线的方程 方法汇总 1 画一条直线2 测量出各点与它的距离3 移动直线 到达某一位置使距离的和最小 测量出此时直线的斜率与截距 得到回归方程 1 选取两点作直线ps 使直线两侧的点的个数基本相同 1 在散点图中多取几组点 确定出几条直线的方程2 分别求出各条直线的斜率 截距的平均数3 将这两个平均数当成回归方程的斜率与截距 上面三种方法都有一定的道理 但总让人感到可靠性不强 回归直线与散点图中各点的位置用数学的方法来刻画应具有怎样的关系 方法汇总 1 画一条直线2 测量出各点与它的距离3 移动直线 到达某一位置使距离的和最小 测量出此时直线的斜率与截距 得到回归方程 1 选取两点作直线ps 使直线两侧的点的个数基本相同 1 在散点图中多取几组点 确定出几条直线的方程2 分别求出各条直线的斜率 截距的平均数3 将这两个平均数当成回归方程的斜率与截距 最小二乘法 求回归方程的关键 如何使用数学方法来刻画 从整体上看 各点到此直线的距离最小 假设两个具有线性相关关系的变量的一组数据 x1 y1 x2 y2 xn yn 下面讨论如何表达这些点与一条直线y bx a之间的距离 最小二乘法的公式的探索过程如下 1 设已经得到具有线性相关关系的变量的一组数据 x1 y1 x2 y2 xn yn 2 设所求的回归直线方程为Y bx a 其中a b是待定的系数 当变量x取x1 x2 xn时 可以得到Yi bxi a i 1 2 n 3 它与实际收集得到的yi之间偏差是yi Yi yi bxi a i 1 2 n 这样 用这n个偏差的和来刻画 各点与此直线的整体偏差 是比较合适的 因此用表示各点到直线y bx a的 整体距离 x1 y1 x2 y2 xi yi xn yn 由于绝对值使得计算不方便 在实际应用中人们更喜欢用 x1 y1 x2 y2 xi yi xn yn 这样 问题就归结为 当a b取什么值时Q最小 即点到直线的 整体距离 最小 2020 3 17 11 可编辑 这样通过求此式的最小值而得到回归直线的方法 即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法 根据有关数学原理推导 a b的值由下列公式给出 14 求线性回归方程的步骤 1 求平均数 2 计算与yi的乘积 再求 3 计算 4 将上述有关结果代入公式 写出回归直线方程 xi 根据最小二乘法公式 利用计算机可以求出其回归直线方程 思考 将表中的年龄作为x代入回归方程 看看得出的数值与真实数值之间的关系 从中你体会到了什么 x 27时 y 15 099 x 37时 y 20 901 存在样本点不在直线上 2012山东临沂二模 20 12 假设关于某设备的使用年限x和所有支出的维修费用y 万元 有如下表的统计资料 若由资料可知y对x呈线性相关关系 试求 1 线性回归直线方程 2 估计使用年限为10年时 维修费用是多少 y 1 23x 0 08 y 12 38 回归直线方程特点 存在样本点不在直线上的样本点 只能表示线性相关关系 回归直线方程的特点 练习 解析 销售量y 件 与销

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论