




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省高中物理杨永忠名师工作室观摩课、示范课教学设计方案学校:毕节市民族中学 设计者:曹静彧主题、单元或课的名称人教A版必修1第二章 基本初等函数(1) 2.1.2指数函数及其性质 第1课时指数函数的图象及性质学科 高中数学年级 高三班 4班教学目标知识与技能 (1)掌握指数函数的概念、图象和性质; (2)能借助计算机或计算器画指数函数的图象; (3)能由指数函数图象探索并理解指数函数的性质 过程与方法 (1)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等; (2)通过探讨指数函数的底数a0,且a1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人情感态度与价值观(1)通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识;(2)在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段学习者特征分析知识基础 有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质. 教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值.能力基础 根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持. 学习者特征分析 1、学习者为高三年级的学生,对数学有一定的基础,能够学习较深层次的数学知识。 2、同时高考对数学有较高的要求,学生不得不认真学习数学知识。学习动机分析 学生学习的目的是为了高考,同时也是了解数学知识在现实生活中的应用。学习风格分析 经过三年的培养,学生具备了扎实的数学基础,对高强度的教学已适应,学习已有自己独特的方法。教学内容教材分析本节是高中教材的必修内容, 高考对这部分知识考察密度比较大,基本上是年年必考,分值大致在1017分之间。试题难度0.7左右,属于容易题,只要学生记住相关公式与性质就可轻松搞定。知识结构图通过实例(细胞分裂等),引出课题.经小组讨论、合作交流,类比归纳得出指数函数的概念.指数函数的概念类比、猜想、归纳理解掌握借助图形计算器画出具体指数函数的图象,探索归纳体验指数函数的单调性与特殊点.指数函数的单调性与特殊点探索、体验 教学重难点: 重点:指数函数的概念、图象和性质 难点:指数函数图象和性质的发现过程,及指数函数图象与底数的关系 重难点的突破:以函数y2x与的图象为切入点,分组协作,导出yax与图象间的关系,并由此总结yax(a0,a1)的相关性质教师利用多媒体课件,先演示当a变化时,图象变化的动画过程,重现指数函数的特征与性质;接着演示当a是固定的常数,从左到右发展,图象变化的动画过程,从而得出是增函数或减函数的性质借助几何画板,较好的完成指数函数图象和性质的教学,突出重点的同时化解难点。 设计理念:本节课我采取“目标、评价、教学一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,将学生分成六人小组,每组由一名组长负责,借助五个环节实现本节课的学习目标.总结升华师生交流巩固提高随堂练习加深理解深入探究发现问题探求新知归纳概念创设情境信息化教学媒体和资源的选择和运用: PPT课件, 几何画板,微视频教学准备:1师准备:根据学生情况,拟写教学设计,制作课件,上网查找资料;2学生准备:课前预习,了解生活中指数函数图像与性质的应用。3. 分析学生学情,预测学生学习中会遇到的困难,做好相应的解决策略。教学过程(活动)教学环节教学内容师生活动及意图一、创设情境,归纳概念【问题导思】细胞分裂时,由一个分裂成两个,两个分裂成四个,.设1个细胞分裂x次后得到的细胞个数为y.1变量x与y间存在怎样的关系?【提示】y2x,xN*.2上述对应关系是函数关系吗?为什么?【提示】是符合函数的定义3如果xR,等式y2x表示y是x的函数吗?如果是,其解析式有何特征?【提示】当xR时,y2x表示y是x的函数特征:等式右边是指数形式,底数为常数,指数是变量指数函数的定义一般地,函数yax(a0,且a1)叫做指数函数,其中x是自变量,函数的定义域是R.通过具体实例,经过合作交流活动由学生自主归纳总结得到指数函数的概念,并对指数函数的概念进行分析。 在小组讨论 交流中发现学生的优点并予以表扬.在学生总结归纳概念的过程中对学生加以肯定。 通过小组间相互PK的教学活动,激发学生探求新知的主动性,并培养学生的观察能力、表达能力和归纳总结能力 .二、发现问题,探求新知我以下面三个问题为载体,让学生探求新知:1.你能类比讨论函数的性质的产生过程来研究指数函数的性质吗?2.画出下面四个函数图象?、 、 3.观察所作出的函数图象总结规律?分组活动,合作学习让每个小组分工明确,一方面用最基本的列表、描点、连线画出图象研究指数函数,另一方面借助图形计算器的操作直接绘制出上例中的四个指数函数图象,并让学生上台展示成果. 通过组内交流归纳指数函数图象特点,由此得到指数函数性质,从而解决提出的第三个问题. 通过自主探索、合作学习不仅体现了学生的主体地位,而且可以让学生在探索过程中体会到利用数形结合这一思想方法,借助图象分析问题,同时感受到从具体到一般的思想方法的应用,渗透概括能力的培养.三、深入探究,加深理解 引导学生除了研究指数函数的定义域、值域、单调性、奇偶性外,还要引导学生关注结论:1.底数互为倒数的两个函数图象关于y轴对称;2.在第一象限当x取同一个值时,函数值随底数的增大而增大.以探究活动的形式让学生合作交流,实现学生知识的自我建构,使学生在开放、民主的教学氛围中发现问题、获取新知. 四、课堂互探究动(1)下列函数:y23x;y3x1;y3x;yx3;y(4)x.其中,指数函数的个数是()A1B2C3D4(2)若指数函数f(x)的图象经过点(2,4),则f(3)_.【思路探究】【自主解答】(1)根据指数函数的定义知只有符合其中、的底数不符合要求,不是指数函数;中y3x1指数是x1而非x,不是指数函数;中y23x中系数为2而非1,不是指数函数(2)设f(x)ax(a0,且a1),因为图象经过点(2,4),所以f(2)4,即a24.因为a0且a1,得a2,即函数的解析式为f(x)2x,f(3)238.【答案】(1)A(2)81判断一个函数是指数函数的方法只需判定其解析式是否符合yax(a0,且a1)这一结构形式,其具备的特点为;2求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的未知参数,从而得到函数的解析式,其中指数函数的概念是解决这类问题的关键(1)如图211是指数函数yax,ybx,ycx,ydx的图象,则a,b,c,d与1的大小关系是()图211Aab1cdBba1dcC1abcdDab1dc(2)函数yax13的图象恒过定点坐标是()A(1,3)B(1,2)C(2,3)D(2,2)【思路探究】(1)作直线x1,其与函数的交点纵坐标即为底数的值(2)【自主解答】(1)法一在中底数小于1且大于零,在y轴右边,底数越小,图象向下越靠近x轴,故有ba,在中底数大于1,在y轴右边,底数越大,图象向上越靠近y轴,故有dc.故选B.法二作直线x1,与四个图象分别交于A、B、C、D四点,由于x1代入各个函数可得函数值等于底数的大小,所以四个交点的纵坐标越大,则底数越大,由图可知ba1d0,且a1)恒过定点的问题,一般思路为:2直线x1与指数函数yax(a0,且a1)的图象交点的纵坐标就是底数a的大小,在第一象限内,指数函数yax(a0,且a1)的图象底数大的在上边,也可以说底数越大越靠近y轴求下列函数的定义域和值域:(1)y2;(2)y.【思路探究】【自主解答】(1)由x40,得x4,定义域为x|xR,且x40,21,y2的值域为y|y0,且y1(2)由x20,得x2.定义域为x|x2当x2时,0,又01,y的值域为y|00且a1)的值域为(0,)2函数yaf(x)的定义域、值域的求法(1)函数yaf(x)的定义域与yf(x)的定义域相同(2)函数yaf(x)的值域的求法如下:换元,令tf(x);求tf(x)的定义域xD;求tf(x)的值域tM;利用yat的单调性求yat,tM的值域 在实际操作中,对学生作出的不同指数函数图象进行指导.通过提问、板演等活动判断函数图象、性质的正确与否。能借助计算器画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在利用指数函数的性质对两个数进行大小比较时,首先把这两个数看作指数函数的两个函数值,利用指数函数的单调性比较.若两个数不是同一函数的两个函数值,则寻求一个中间量,两个数都与这个中间量进行比较,这是常用的比较数的大小的方法,然后得两个数的大小,数学上称这种方法为“中间量法”. 由实际情况,对学生发现、得出的结论进行适当的引导挖掘图象本身的内在规律。五、随堂练习、巩固提高1下列函数中是指数函数的是()Ay5x1Byx4Cy3xDy23x【解析】形如yax(a0且a1)的函数是指数函数只有C选项符合,故选C.【答案】C2函数y2x的图象是图中的()【解析】y2xx.【答案】B3yax1(a0且a1)一定过点_【解析】当x10,即x1时,y1,图象一定过点(1,1)【答案】(1,1)4已知函数y(a1)x是指数函数,且当x1,则实数a的取值范围是_【解析】x1 0a11即1a0且a1”而出错【防范措施】1.准确理解指数函数的定义是求解此类问题的关键2在利用系数为1解出a的值后,验证底数是否满足“a0且a1”【正解】函数y(a24a4)ax是指数函数,由指数函数的定义得a3.1判断一个函数是否为指数函数只需判定其解析式是否符合yax(a0且a1)这一结构形式2指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大3由于指数函数yax(a0且a1)的定义域为R,所以函数yaf(x)(a0且a1)与函数f(x)的定义域相同,求与指数函数有关的函数的值域时,要考虑并利用指数函数本身的要求,并利用好指数函数的单调性.在这一环节中,我会给学生2分钟的时间进行小组交流,然后谈谈这节课的收获.引导学生不仅从知识上总结,还要从学习方法和学习态度上进行自我评价.最后思考:计算: 与的大小.,由此引出总结语“勤学如初见之苗,不见其增,日有所长;辍学如磨刀之石,不见其损,日有所亏.”希望学生们通过这节课的学习,不仅充分认识指数函数及其性质,而且学习到了要珍惜时间,注意积累,积少成多的观念. 通过提问,让学生总结、归纳本节课学习的主要内容,并对学习结果进行。回顾所学内容,优化认知结构,完成学习目标3。培养学生及时复习的习惯.小结的形式符合学生的认知规律,能优化认知结构.七.反思体会评价.通过本节课的学习,你有什么收获或体会?学生分成小组,通过讨论后分组进行汇报。八.布置作业一、选择题1函数f(x)3x1的值域为()A(1,)B(1,)C(0,1)D1,)【解析】3x0,3x11,函数f(x)3x1的值域为(1,)【答案】B2若函数yf(x)的图象与y2x的图象关于y轴对称,则f(3)()A8B4 C.D.【解析】由题意可知f(x)x,f(3)f3.【答案】C图2123指数函数yax与ybx的图象如图212,则()Aa0,b0 Ba0C0a1 D0a1,0b1,0a0且a1)的图象经过的定点坐标是()A(0,1)B(2,1)C(2,0)D(2,1)【解析】令x20得x2,此时y1,函数经过的定点坐标是(2,1)【答案】D5(2014日照高一检测)函数yaxa(a0,a1)的图象可能是()【解析】当a1时,yax是增函数,a1,则函数yaxa的图象与y轴的交点在x轴下方,故选项A不正确;yaxa的图象与x轴的交点是(1,0),故选项B不正确;当0a1时,yax是减函数,yaxa的图象与x轴的交点是(1,0),故选项C正确;若0a1,则1a0且a1),则f()e,即ae,f()a.【答案】7函数y(k2)ax2b(a0,且a1)是指数函数,则k_,b_.【解析】由题意可知k1,b2.【答案】128.图213如图213所示是指数函数的图象,已知a的值取,则相应曲线C1,C2,C3,C4的a依次为_【解析】由规律可知,C1,C2,C3,C4的底数a依次增大【答案】,三、解答题9(2014无锡高一检测)求函数f(x)3x1的定义域、值域【解】因为f(x)3x1x1,所以函数f(x)3x1的定义域为R.由xR得x0,所以x11,所以函数f(x)3x1的值域为(1,)10已知f(x)axax(a0,a1),且f(1)3.(1)求f的值;(2)求f(0)f(1)f(2)的值【解】(1)f(1)3,aa13. 又faa0,aa .(2)f(0)a0a02,f(2)a2a2(aa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂安全培训确认书课件
- 2025年河北唐山市丰润区中医医院招聘就业见习人员50人备考练习试题及答案解析
- 2025贵州黔南州瓮安县江界河镇招聘公益性岗位人员考试参考试题及答案解析
- 2025四川华丰科技股份有限公司招聘精益工程师岗位1人备考考试题库附答案解析
- 2025辽宁中医药大学附属第二医院(辽宁省中医药研究院)招聘高层次人才(第一批)9人备考考试题库附答案解析
- 2026届江淮汽车校园招聘备考考试题库附答案解析
- 哲学精要解析
- 2025江苏卫生健康职业学院劳务派遣制工作人员招聘4人考试参考试题及答案解析
- 2025上海浦东新区医疗急救中心招聘35人备考考试题库附答案解析
- 展翼远航的蓝图
- 信鸽裁判证管理办法
- 抑郁症病例分析报告
- 痛风性关节炎鉴别
- 《老年冠心病慢病管理指南(2024版)》解读
- 会计信息系统应用 课件 项目三 总账管理系统
- 2025年河北大学版(2024)小学信息科技三年级(全一册)教学设计(附目录 P179)
- 2025至2030全球及中国工业I和和O模块行业发展趋势分析与未来投资战略咨询研究报告
- 过敏性紫癜的护理
- 瑶族少数民族文化介绍
- 团队士气提升培训课件
- 自来水厂药品管理制度
评论
0/150
提交评论