194 逆命题与逆定理第3课时.doc_第1页
194 逆命题与逆定理第3课时.doc_第2页
194 逆命题与逆定理第3课时.doc_第3页
194 逆命题与逆定理第3课时.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

19.4 逆命题与逆定理第3课时 (一)本课目标 1掌握角的平分线性质定理和判定定理,并能运用这两个定理证明线段相等和角相等 2提高学生对角平分线性质和判别在实际生活中的应用能力 3从对角平分线上的点的“纯粹性”与“完备性”两方面的考察中,产生几何图形美的情感体验 (二)教学流程 1情境导入现有如图所示的三条公路L1,L2,L3,要想在三条公路围成的区域内建一个加油站,使它到每条公路的距离都相等你能找到这个位置吗? 2课前热身 在这个问题中,每两条公路都形成有夹角,让我们很容易联系到以前学过的角平分线上的点到角两边的距离相等这条性质 角平分线的这条性质是怎样得到的呢? 引导学生阅读课本第37页,回顾画图、对折、观察的方法 3合作探究 (1)整体感知请同学们用逻辑推理的方法来加以证明将这个命题画出图形,写出已知、求证 (2)四边互动 互动1 师:这是证明线段相等的问题我们有哪些方法可以证明线段相等? 生:等角对等边,还有全等三角形对应边相等 师:归纳得很好我们就借鉴这个思路,证明哪两个三角形全等呢? 生:PDO与PEO 师:怎样证全等? 生:可以通过AAS的判定方法(略) 师:于是得到了角平分线的性质定理:角平分线上的点到这个角两边的距离相等 明确 借助于三角形全等来证明线段相等的方法 互动2 师:反过来,到一个角的两边距离相等的点是否一定在这个角的平分线上呢?我们也可通过“证明”来回答这个问题生:(画出图形,写出已知、求证) 师:为了证明点Q在AOB的平分线上,可以画射线OQ,证明OQ平分AOB,即证:BOQ=AOQ又如何得到两个角相等呢? 生:也可以通过证明三角形全等来证由HL定理可证出DOQEOQ,于是BOQ=AOQ 师:很好这样就有角平分线的判定定理:到一个角的两边距离相等的点在这个角的平分线上 明确 巩固利用三角形全等来证明角相等的方法 例:已知:如图所示,ABC中,AD、BE、CF分别是三条角平分线求证:AD、BE、CF交于一点 证明: 设AD、BE交于一点O,作OGBC于G,OHAC于H,OIAB于I 则有:OG=OI=OH(角平分线上点到两边距离相等) 因为:OG=OH 所以:O点也在C的平分线上(到角两边距离相等点在这个角的平分线上),即在CF上,也就是AD、BE、CF交于一点 明确 此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于一点,再证明这点在第三条直线上 师:通过这道例题的证明,我们知道了三角形三条内角平分线必交于一点,这一点称为三角形的内心,内心的性质是到三角形三边的距离相等利用这个性质,我们再回头来回答开始提出的那个问题 生:(略) 4达标反馈 (1)判断题 P为AOB内一点,C在OA上,D在OB上,若PC=PD,则OP平分AOB () 到角的两边距离不相等的点一定不在角平分线上 () 三角形三条角平分线交于一点,且这一点到三个顶点的距离相等() (2)填空题 P在MON的平分线,PAOM于A,PBON于B,PA+PB=12,则PA= 6 ,PB= 6 如图所示,ABC中,C=90,AD平分BAC交BC于D,若BD:DC=3:4,点D到AB的距离为12,则BC= 21 (3)证明题如图所示,P为AOB内一点,OA=OB且OPA与OPB的面积相等,求证:AOP=BOP(提示:作PCOA于C,PDOB于D,通过面积相等,高相等证明PC=PD即可) ABC的外角CBD、BCE的角平分线交于点F,求证:AF平分BAC(提示:作FGBD于G,FHBC于H,FICE于I,证明FG=FH=FI由AGFAIF即可) 5学习小结 (1)引导学生作知识总结:角平分线的性质定理与判定定理的内容,怎样找到三角形的内心,它有什么性质 (2)教师扩展:利用两个定理证明线段相等、角相等,不用再证全等,可简化解题过程 (三)延伸拓展 1链接生活 在开头提出的问题中,若不限制在三条公路围成的区域内,那么符合条件的加油站的位置应该有几处?请画图加以证明 2巩固练习(1)如图所示,已知:ADBC,DCAD,AE平分BAD,E是DC中点,试问:AD、BC、AB之间有何关系?并证明你的结论(提示:作EFAB于F,连结BE,证DE=EF=EC即得证AB=AD+BC)(2)在RtABC中,AB=BC,ABC=90,D是AB上一点,AECD于E,且AE=DC,BD=10cm,求D到AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论