17.2.2反比例函数与实际问题2.doc_第1页
17.2.2反比例函数与实际问题2.doc_第2页
17.2.2反比例函数与实际问题2.doc_第3页
17.2.2反比例函数与实际问题2.doc_第4页
17.2.2反比例函数与实际问题2.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

容:172 实际问题与反比例函数(三)一、教学目标(一)、知识与技能1能灵活列反比例函数表达式解决一些实际问题2能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题 (二)、过程与方法 1经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题 2体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力 (三)、情感态度与价值观 1积极参与交流,并积极发表意见 2体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具二、教学重点和难点教学重点:掌握从物理问题中建构反比例函数模型教学难点:从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想三、教学方法四、课时安排: 第四课时五、教学过程一、创设问题情境,引入新课 活动1 问题:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用下面的例子就是其中之一 例1在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R5欧姆时,电流I2安培 (1)求I与R之间的函数关系式;(2)当电流I0.5时,求电阻R的值 设计意图:运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力师生行为: 生:(1)解:设IR5,I2,于是 2,所以k10,I(2)当I0.5时,R20(欧姆) 师:很好!“给我一个支点,我可以把地球撬动”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢? 生:这是古希腊科学家阿基米德的名言 师:是的公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为; 阻力阻力臂动力动力臂(如下图)下面我们就来看一例子 二、讲授新课 活动2 例3小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和05米 (1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力? (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少? 设计意图: 物理学中的很多量之间的变化是反比例函数关系因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用 教师在此活动中应重点关注: 学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系; 学生能否面对困难,认真思考,寻找解题的途径; 学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣 师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题 解:(1)根据“杠杆定律”有Fl12000.5得F当l1.5时,F400 因此,撬动石头至少需要400牛顿的力 (2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有 Fl600,l当F400200时,l331.51.5(米) 因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米 生:也可用不等式来解,如下: Fl600,F而F400200时 200l3所以l1.531.51.5 即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米 生:还可由函数图象,利用反比例函数的性质求出 师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题: 用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力? 生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力阻力臂k(常数且k0),所以根据“杠杆定理”得Flk,即F(k为常数且k0) 根据反比例函数的性质,当kO时,在第一象限F随l的增大而减小,即动力臂越长越省力 师:其实反比例函数在实际运用中非常广泛例如在解决经济预算问题中的应用 活动3 问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.550.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x04)元成反比例又当x065元时,y0.8(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少? 设计意图: 在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题 解:(1)y与x04成反比例,设y(k0)把x0.65,y0.8代入y,得 0.8解得k0.2,yy与x之间的函数关系为y(2)根据题意,本年度电力部门的纯收入为(0.60.3)(1y)0.3(1)0.3(1)0.320.6(亿元) 答:本年度的纯收人为0.6亿元, 师生共析: (1)由题目提供的信息知y与(x0.4)之间是反比例函数关系,把x0.4看成一个变量,于是可设出表达式,再由题目的条件x0.65时,y0.8得出字母系数的值; (2)纯收入总收入总成本 三、巩固提高活动4一定质量的二氧化碳气体,其体积y(m3)是密度(kgm3)的反比例函数,请根据下图中的已知条件求出当密度1.1 kgm3时二氧化碳气体的体积V的值设计意图: 进一步体现物理和反比例函数的关系 师:若要求出1.1 kgm3时,V的值,首先V和的函数关系 生:V和的反比例函数关系为:V 生:当1.1kgm3根据V,得V900(m3) 所以当密度1.1 kgm3时二氧化碳气体的气体为900m3 四、课时小结 活动5 你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得 设计意图:这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性 教师组织学生小结 反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系活动与探究学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示 (1)绿化带面积是多少?你能写出这一函数表达式吗?(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?x(m)10203040y(m)过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值 结果:(1)绿化带面积为1040400(m2)设该反比例函数的表达式为y,图象经过点A(40,10)把x40,y10代入,得10123333133333333333333333容:17.2实际问题与反比例函数(四)教学目标:1、能综合利用物理电学知识,反比例函数知识解决一些实际问题。2、体会数学与物理间的密切联系,增强应用意识,提高运用代数方法解决问题的能力。3、积极参与交流,并积极发表意见。教学重点:掌握从物理电学问题中建构反比列函数的模型。教学难点:从实问题中寻找变量之间的关系,关键还是充分运用所学的知识分析物理中的电学问题,建立函数模型,教学时注意分析过程,渗透数行结合的思想。教学方法:讲练结合课时安排: 第五课时教学过程:一、创设问题情境,引入新课活动1做一做:蓄电池的电压为定值,使用此电源时,电流与电阻间的函数关系如下图所示:(1)蓄电池的电压为多少?你能写出这一函数表达式吗?(2)完成下表,并回答下列问题:如果蓄电池为电源的用电器限制电流不得超10A,那么用电器的可变电阻可控制在什么范围内?R/ 345678910I/A4师生共析:图形所提供的信息包括:直观上看,I与R之间的关系可能是反比例函数关系,利用相关知识IR=U(U为定值)得到确认;由图象上点A的坐标可知,当用电器电阻为9 时,电流为4A。(1)根据图象可得当用电器的电阻为9 时,电流为4A,因为IR=U(U为定值),所以蓄电池的电压为U=94=36(V)。所以电流I与电阻R之间的函数关系为 。即I与R两个物理量成反比例函数关系。利用I与R两个物理量之间的关系可填写下表:从左向右依次为:12,9, ,6, , , 。如果以此蓄电池为电源的用电器,限制电流不超过10A,即I10A,所以 10,R3.6( )。因此,用电器的可变电阻应控制在大于等于3.6 的范围内。我们还可以综合运用表格、图象来考察此问题,这样我们就可以形成对反比例函数较完整的认识。无论从图象还是从表格,我们都能观察出反比例函数在第一象限I随R的增大而减小。当I=10A时,R=3.6 。因此当限制电流不超过10A时,用电器的可变电阻应是不小于3.6 的。用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,因此同学们要学好物理,首先要打好数学基础,才能促进你对物理知识的理解和探索。下面我们再来看一个物理方面的问题。二、讲授新课活动2问题:电学知识告诉我们,用电器的输出功率P(瓦)、两端的电压U(伏)及用电器的电阻R(欧姆)有如下关系:PR=U2。这个关系也可写为P= ,或R= 。 【例4】一个用电器的电阻是可调节的,其范围为110220欧姆,已知电压为220伏,这个用电器的电路图如上图所示。(1)输出功率P与电阻R有怎样的函数关系?(2)用电器输出功率的范围多大?师生行为:可先由学生独立思考,领会反比例函数在物理学中的综合应用,教师应不断地引导学生完成。 解:(1)根据电学知识,当U=220时,有 即输出功率P是电阻R的反比例函数,函数式为P= (2)从式可以看出,电阻越大,功率越小。把电阻的最小值R=110代入式,得到输出功率的最大值:P= 把电阻的最大值R=220代入式,则得到输出功率的最小值P= ;因此用电器的输出功率在220瓦到440瓦之间。结合例4,想一想为什么收音机的音量可以调节,台灯的亮度及风扇的转速可以调节?音量、亮度、及转速随 的减小而增大,随 的增大而减小。利用反比例函数可以解决实际生活中的很多问题,大大地方便我们的生活。下面我们再来看几个这样的例子。活动3练习:见教材P612题寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?三、例习题分析例1见教材第57页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积 底面积高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2见教材第58页分析:此题类似应用题中的“工程问题”,关系式为工作总量工作速度工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?例1(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得 ,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P144千帕时所对应的气体体积,再分析出最后结果是不小于 立方米四、随堂练习1京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为 2完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式 3一定质量的氧气,它的密度 (kg/m3)是它的体积V(m3)的反比例函数,当V10时, 1.43,(1)求 与V的函数关系式;(2)求当V2时氧气的密度 答案: ,当V2时, 7.15五、课后练习1小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)(1)则速度v与时间t之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?答案: ,v240,t122学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天(1)则y与x之间有怎样的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论