




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
兴仁中学2013年八年级数学暑假习作业2直线型几何综合题学生姓名 家长签字一、学习指引1.知识要点:三角形及四边形的基本性质,特殊三角形、特殊四边形、全等三角形的判定和性质,轴对称、平移、旋转、相似等变换的性质,一次函数图象和性质。2.方法指导:(1)解决动态几何型问题的策略:化“动”为“静”利用运动中特殊点的位置将图形分类;“静”中求“动”针对各类图形,分别解决动态问题。(2)解决图形分割问题的思维方式是:从具体问题出发观察猜想实验操作形成方案严密计算与论证;图形分割问题的解题策略:比较原图形与分割后图形在边、角、面积等方面的变化是解决图形分割问题的着手点;(3)新概念性几何题解题策略:正确理解问题中的“新概念”,然后抓住 “新概念”的特征,结合相关的数学知识综合解决问题。二、 典型例题例1如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线BCD作匀速运动,那么ABP的面积S与点P运动的路程之间的函数图象大致是( )(A)(B)(C)(D)(例1图) 例2如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;ABDCPQMN(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由例3三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3)分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形要求如下:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;(3)所画出的几何图形的各顶点必须与小正方形的顶点重合图1矩形(非正方形)图2正方形图3有一个角是135的三角形(例3图)例4如图,两个边长分别为4和3的正方形,请用线段将它们进行适当分割,剪拼成一个大正方形,请在下图中分别画出两种不同的拼法,并将剪拼前、后的相同区域用相同数字序号标出拼法一拼法二备用图二备用图一例5如图,在梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3)点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动当这两点中有一点到达自己的终点时,另一点也停止运动 (1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或CB上时的坐标(用含x的代数式表示,不要求写出x的取值范围);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半试用含x的代数式表示这时点Q所经过的路程和它的速度;试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如果有可能,求出相应的x的值和P、Q的坐标,如不可能,请说明理由例6如图,在等腰梯形ABCD中,ABDC,A=45,AB=10cm,CD=4cm,等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止。 (1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由_形变化为_形;(2)设当等腰直角PMN移动x(s)时,等腰直角PMN与等腰梯形ABCD重叠部分的面积为y(cm2)。 当x=6时,求y的值; 当6x10时,求y与x的函数关系。例7边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PAPC,则点P为四边形ABCD的准等距点 (1)如图2,画出菱形ABCD的一个准等距点 (2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法) (3)如图4,在四边形ABCD中,P是AC上的点,PAPC,延长BP交CD于点E,延长DP交BC于点F,且CDF=CBE,CE=CF求证:点P是四边形AB CD的准等距点 (4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明) 直线型几何综合题同步练习 班级 姓名 【基础巩固】1如图,一艘旅游船从A点驶向C点. 旅游船先从A点沿以D为圆心的弧AB行驶到B点,然后从B点沿直径行驶到圆D上的C点.假如旅游船在整个行驶过程中保持匀速,则下面各图中,能反映旅游船与D点的距离随时间变化的图象大致是( )ABD(第1题)C时间距离O(B)时间距离OyOx(A)时间距离O(D)时间距离O(C)(第2题)2如图,A,B的坐标为(2,0),(0,1)若将线段平移至,则2()的值为()A2 B3 C4 D5yxOBA(第3题)3如图,点A的坐标为(1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为 ( )(A)(0,0) (B)(,)(C)(,) (D)(,) 4如图,一个的矩形可以用3种不同或或?的方式分割成2或5或8个小正方形,那么一个的矩形用不同的方式分割后,小正方形的个数可以是 yxOAB48121645如图,在直角坐标系中,已知点,对连续作旋转变换,依次得到三角形、,则三角形的直角顶点的坐标为(第5题)P6如图,将边长为1的正三角形沿轴正方向连续翻转2008次,点依次落在点的位置,则点的横坐标为 7矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A所经过的路线长是_8如图,正方形ABCD边长为1,动点P从A点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P所在位置为_第8题图_;当点P所在位置为D点时,点P的运动路程为_(用含自然数n的式子表示)9如图,矩形ABCD中,AB8,BC6,画出面积不相等的三个菱形,使菱形的顶点都在矩形的边上,并分别求出所画菱形的面积。(下列图形供画图用)ABCDABCD10我们知道:过平行四边形纸片的一个顶点,作一条垂线段,沿这条垂线段剪下这个三角形纸片,将它平移到右边的位置,平移距离等于平行四边形的底边长a,可得到一个矩形(如图1)。(1)在图2的纸片中,ADAB,按上述方法,你能使所得的四边形是菱形吗?如果能,画出这条线段及平移后的三角形(用阴影部分表示);如果不能,请说明理由。(2)什么样的平行四边形纸片按上述方法能得到正方形?画出这个平行四边形,并说明理由。ACDB11如图,四边形ABCD中,AB=AD,CB=CD,但ADCD,我们称这样的四边形为“半菱形”。小明说“半菱形的面积等于两条对角线乘积的一半”。他的说法正确吗?请你判断并证明你的结论。12如图,直角梯形ABCD中,ABCD,BCD=Rt,AB=AD=10,BC=8。点P从点A出发,以每秒2的速度沿线段AB方向向点B运动,点Q从点D出发,以每秒3的速度沿线段DC方向向点C运动。已知动点P、Q同时发,当点P运动到点B时,P、Q运动停止,设运动时间为t。(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得BPQ的面积为202,若存在,请求出所有满足条件的t的值;若不存在,请说明理由。【能力拓展】13把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角满足条件:090),四边形CHGK是旋转过程中两三角板的重叠部分(如图)。(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论; (2)连接HK,在上述旋转过程中,设BH,GKH的面积为,求与之间的函数关系式,并写出自变量的取值范围; (3)在(2)的前提下,是否存在某一位置,使GKH的面积恰好等于ABC面积的?若存在,求出此时的值;若不存在,说明理由。14我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)除了正方形外,写出你所学过的特殊四边形中是勾股四边形的两种图形的名称: ;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB,并写出点M的坐标;(3)如图2,以ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连结CE,BG相交于O点,P是线段DE上任意一点.求证:四边形OBPE是勾股四边形.15如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”在研究“接近度”时,应保证相似图形的“接近度”相等(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形若菱形的一个内角为,则该菱形的“接近度”等于 ;当菱形的“接近度”等于 时,菱形是正方形(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义 兴仁中学2013年八年级数学暑假习作业2答案 直线型几何综合题(典型例题)例1.B例2.(1) (2)x=2或x=4 (3)不存在,理由略.例3. (1)(2)(3)例4. 例5. (1)当Q在OC上时, Q ();当点Q在CB上时, Q (2x-1,3) (2)点Q所经过的路程为16-x,速度为PQ不可能同时把梯形OABC的面积也分成相等的两部分例6.等腰直角三角形;等腰梯形;(2)9;y=3x-9。例7.解:(1)因为菱形的对角线互相垂直平分,所以在直线AC上除线段AC中点外的任意一点都符合条件。2)线段BD的垂直平分线与直线AC的交点。(3)连结DB,证 DCFBCE(AAS), CD=CB, CDB=CBD. PDB=PBD, PD=PB, PAPC 点P是四边形ABCD的准等距点(4)当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个 直线型几何综合题(同步练习)【基础巩固】1B; 2D ;3C ; 44或7或9或12或15个小正方形; 5;6 2008;712;8点B;4n3;910(1) (2)1112(1)CD=16(cm) (2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10-2t,DQ=3t。10-2t=3t,解得t=2此时,BP=DQ=6,CQ=10。BQ=。四边形PBQD的周长=2(BP+BQ)=12+(cm) (3)假设存在某一时刻,使得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妇科急症精准治疗进展-洞察及研究
- 建筑方案设计材质是什么(3篇)
- 中国校园消防安全(3篇)
- 校园消防安全板报素材(3篇)
- 第二节 地月系教学设计-2025-2026学年高中地理选修1中图版
- 公寓建筑方案设计机构(3篇)
- 网球日语基础知识培训班课件
- 有关天气的绘画课件
- 主板选购教学设计方案
- 党校建筑方案设计汇报(3篇)
- 《慢阻肺健康大课堂》课件
- 三年级 人教版 数学 第六单元《两位数乘一位数(不进位)口算》课件
- 民爆信息系统网络服务平台
- 2024人教版英语七年级下册《Unit 3 Keep Fit How do we keep fit》大单元整体教学设计2022课标
- 2025年度智慧企业ERP系统集成与运维服务合同模板2篇
- 中国高血压防治指南(2024年修订版)
- 2024年优居房产全国加盟手册3篇
- 中广核人才测评题库
- 污水处理工程施工工程组织设计
- 氨基酸作为药物靶点
- 护理深静脉血栓科普
评论
0/150
提交评论