




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、教学过程:(一)激情导课问题1:我们在初中时就知道,由此我们能否得到大家可以猜想,是不是等于呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式(二)民主导学:任务一:公式推导在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示。思考1:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)思考2:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果?两角差的余弦公式: 任务二:例题讲解例1、利用和、差角余弦公式求、的值.解:分析:把、构造成两个特殊角的和、差. 点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.例2、已知,是第三象限角,求的值.解:因为,由此得又因为是第三象限角,所以所以点评:注意角、的象限,也就是符号问题. 思考:本题中没有,呢?(三)检测导结:1.不查表计算下列各式的值:解: 2教材P127面1、2、3、4题3.小结:两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.(1)牢记公式(2)在“给值求值”题型中,要能灵活处理已、未知关系(六)作业:导学案作业一3.1.2 两角和与差的正弦、余弦、正切公式(一)一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、教学过程:(一)激情导课:(1)大家首先回顾一下两角差的余弦公式: (2)?(二)民主导学任务一:公式推导问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢?探究1、让学生动手完成两角和与差正弦公式. 探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)探究3、我们能否推倒出两角差的正切公式呢?探究4、通过什么途径可以把上面的式子化成只含有、的形式呢?(分式分子、分母同时除以,得到注意: 5、将、称为和角公式,、称为差角公式。任务二:例题讲解例1、已知是第四象限角,求的值.解:因为是第四象限角,得, ,于是有: 思考:在本题中,那么对任意角,此等式成立吗?若成立你能否证明? 练习:教材P131面1、2、3、4题例2、已知求的值()例3、利用和(差)角公式计算下列各式的值:(1)、;(2)、;(3)、解:(1)、;(2)、;(3)、(三)检测导结1.练习:教材P131面5题2.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,学会灵活运用.3.作业:导学案作业二。3.1.2 两角和与差的正弦、余弦、正切公式(二)一、教学目标1、理解两角和与差的余弦、正弦和正切公式,体会三角恒等变换特点的过程;2、掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换。二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、教学过程:(一)激情导课:(1)基本公式 (2)练习:教材P132面第6题。思考:怎样求类型?(二)民主导学例1、化简解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢? 思考:是怎么得到的?,我们是构造一个叫使它的正、余弦分别等于和的.归纳:例2、已知:函数(1) 求的最值。(2)求的周期、单调性。例3已知A、B、C为ABC的三內角,向量,且,(1) 求角A。(2)若,求tanC的值。(三)检测导结:1(1)教材P132面7题(2)在ABC中,则ABC为( ) A直角三角形 B钝角三角形 C锐角三角形 D等腰三角形(3) ( ) A 0 B2 C D(4)思考:已知,求2、小结:掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换3、作业:导学案作业三3.1.3 二倍角的正弦、余弦和正切公式一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;教学难点:二倍角的理解及其灵活运用.三、教学过程:(一)复习导入:大家首先回顾一下两角和的正弦、余弦和正切公式, 练习:(1)在ABC中,则ABC为( ) A直角三角形 B钝角三角形 C锐角三角形 D等腰三角形 (2) ( ) A 0 B2 C D思考:已知,求我们由此能否得到的公式呢?(学生自己动手,把上述公式中看成即可),(二)民主导学任务一:公式推导:;思考:把上述关于的式子能否变成只含有或形式的式子呢?;注意: 任务二:例题讲解例1、已知求的值解:由得又因为于是;例2在ABC中,例3已知求的值解:,由此得解得或例4已知(三)检测导结1.练习:教材P135面1、2、3、4、5题2.小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.3.作业:导学案作业四。3.2简单的三角恒等变换(一)一教学目标1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力三、教学过程: (一)复习导课:三角函数的和(差)公式,倍角公式(二)民主导学:任务一:公式推导1、由二倍角公式引导学生思考:有什么样的关系?学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台 例1、试以表示解:我们可以通过二倍角和来做此题因为,可以得到;因为,可以得到又因为思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点任务二:公式应用例2已知,且在第三象限,求的值。例3、求证:()、;()、证明:()因为和是我们所学习过的知识,因此我们从等式右边着手;两式相加得;即;()由()得;设,那么把的值代入式中得思考:在例3证明中用到哪些数学思想?例3证明中用到换元思想,()式是积化和差的形式,()式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式三检测导结:1.练习:P142面1、2、3题。2小结:要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用3作业:导学案。3.2简单的三角恒等变换(二)一、教学目标1、通过三角恒等变形,形如的函数转化为的函数;2、灵活利用公式,通过三角恒等变形,解决函数的最值、周期、单调性等问题。二、教学重点与难点重点:三角恒等变形的应用。难点:三角恒等变形。三、教学过程(一)复习导课:二倍角公式。(二)民主导学任务一:典型例题分析例1: ;解:(1)由得(2)例2解: .例已知函数(1) 求的最小正周期,(2)当时,求的最小值及取得最小值时的集合点评:例是三角恒等变换在数学中应用的举例,它使三角函数中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用例4若函数上的最大值为6,求常数m的值及此函数当时的最小值及取得最小值时的集合。(三)检测导结:练习:1.教材P142面第4题。2.小结:(1) 二倍角公式:(2)二倍角变式:(3)三角变形技巧和代数变形技巧常见的三角变形技巧有切割化弦;“1”的变用;统一角度,统一函数,统一形式等等3.作业:导学案作业3.2简单的三角恒等变换(三)教学目标(一) 知识与技能目标熟练掌握三角公式及其变形公式(二) 过程与能力目标抓住角、函数式得特点,灵活运用三角公式解决一些实际问题(三) 情感与态度目标培养学生观察、分析、解决问题的能力教学重点和、差、倍角公式的灵活应用教学难点如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明教学过程(一)复习导课:和差、二倍角公式。(二)民主导学任务一:典型例题分析例1:教材P141面例4例1. 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记COPa,求当角a取何值时,矩形ABCD的面积最大?并求出这个最大面积.例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)解:(1)如图,设矩形长为l,则面积,所以当且仅当即时,取得最大值,此时S取得最大值,矩形的宽为即长、宽相等,矩形为圆内接正方形.(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为、,所以面积.而,所以,当且仅当时,S取最大值,所以当且仅当即时, S取最大值,此时矩形为内接正方形.变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值PQRSO解:设则故S四边形PQRS故为时,三、检测导结1.课堂小结 建立函数模型利用三角恒等变换解决实际问题.2.课后作业 1. 阅读教材P.139到P.142; 2. 导学案作业第三章 三角恒等变换复习(一)教学目标:1. 通过对本章的知识的复习、总结,使学生对本章形成一个知识框架网络.2. 能灵活运用公式进行求值、证明恒等式.教学重点:运用公式求值、证明恒等式.教学难点:证明恒等式教学过程一、基础知识复习(略)二、作业讲评习案作业三十五中的第5、6题.三、已知三角函数值求三角函数值四、证明恒等式五、课堂小结1. 给值求角时,先要求所求角的某一三角函数值,需结合角的范围确定角的符号;2. 证明三角恒等式时,要灵活地运用公式.六、课后作业教材P.146第8题第(3)、(4)问; P.146第1、2、3题; P.146第4题第(1)、(2)、(3)问; P.147第3题;第三章 三角恒等变换复习(二)教学目标:1. 综合运用知识解决相关问题.2. 培养学生分析问题,运用知识解决问题的能力.教学重点:运用知识解决实际问题教学难点:建立函数关系解决实际问题.教学过程一、作业讲评导学案作业的第5、6题.二、例题分析4. 已知直线l1l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为h1,h2 . B是直线l2上一动点,作ACAB,且使AC与直线l1交于点C,求ABC面积的最小值.5. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点.当ABC的周长为2时,求PCQ的大小.三、课堂小结本节主要讲运用公式解决有关问题:最值问题、存在性问题.四、课后作业导学案作业第三章 三角恒等变换复习(三)教学目标:1. 综合运用知识解决相关问题.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮经营合作协议书标准模板
- 甘肃省白银市平川区中恒学校2025-2026学年英语高三第一学期期末监测试题
- 2025年学历类自考互联网数据库-社会学概论参考题库含答案解析(5卷)
- 2025年学历类自考专业(金融)银行会计学-中央银行概论参考题库含答案解析(5卷)
- 2025-2026学年江苏省东台市第一中学高三英语第一学期期末达标测试试题
- 2025年学历类自考专业(计算机网络)通信概论-工程经济参考题库含答案解析(5卷)
- 2025年学历类自考专业(计算机应用)电子技术基础(三)-计算机系统结构参考题库含答案解析(5卷)
- 2025年学历类自考专业(计算机应用)-C++程序设计参考题库含答案解析(5卷)
- 市政人行天桥施工方案详解
- 4.3海洋与人类第一课时教学设计2024-2025学年高中地理湘教版(2019)必修一
- 运输管理实务(第四版)PPT完整全套教学课件
- 一种基于STM32的智能门锁系统的设计
- 营业厅门面转让合同
- (苯系物)环境空气苯系物的测定固体吸附热脱附气相色谱法方法验证报告
- GB/Z 41084-2021碳纤储能脚
- 天健消耗品管理系统
- GB/T 70.2-2008内六角平圆头螺钉
- GB/T 28118-2011食品包装用塑料与铝箔复合膜、袋
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
- T-JSYLA 00007-2022 江苏省智慧公园建设指南
- 方坯连铸机图解课件
评论
0/150
提交评论