已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2006年普通高等学校招生全国统一考试(山东卷)理科数学(必修+选修)第I卷(共60分)三解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤。17(本小题满分12分)已知函数,且的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(I)求(II)计算.解:(I)的最大值为2,.又其图象相邻两对称轴间的距离为2,.过点,又.(II)解法一:,.又的周期为4,解法二:又的周期为4,18(本小题满分12分)设函数,其中,求的单调区间.解:由已知得函数的定义域为,且(1)当时,函数在上单调递减,(2)当时,由解得、随的变化情况如下表0+极小值从上表可知当时,函数在上单调递减.当时,函数在上单调递增.综上所述:当时,函数在上单调递减.当时,函数在上单调递减,函数在上单调递增.19(本小题满分12分)ABCA1VB1C1如图,已知平面平行于三棱锥的底面ABC,等边所在的平面与底面ABC垂直,且ACB=90,设(1)求证直线是异面直线与的公垂线;(2)求点A到平面VBC的距离;(3)求二面角的大小。解法1:()证明:平面平面,又平面平面,平面平面,平面,又,.为与的公垂线.()解法1:过A作于D, 为正三角形,D为的中点.BC平面,又,AD平面,线段AD的长即为点A到平面的距离.在正中,.点A到平面的距离为.解法2:取AC中点O连结,则平面,且=.由()知,设A到平面的距离为x,即,解得.即A到平面的距离为.则所以,到平面的距离为.(III)过点作于,连,由三重线定理知是二面角的平面角。在中,。所以,二面角的大小为arctan.解法二:取中点连,易知底面,过作直线交。取为空间直角坐标系的原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系。则。(I),。 又由已知。,而。又显然相交,是的公垂线。(II)设平面的一个法向量, 又 由取 得 点到平面的距离,即在平面的法向量上的投影的绝对值。,设所求距离为。则所以,A到平面VBC的距离为.(III)设平面的一个法向量 由 取 二面角为锐角,所以,二面角的大小为20(本小题满分12分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等。用表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量的概率分布和数学期望;(3)计分介于20分到40分之间的概率。解:(I)解法一:“一次取出的3个小球上的数字互不相同”的事件记为,则解法二:“一次取出的3个小球上的数字互不相同的事件记为A”,“一次取出的3个小球上有两个数字相同”的事件记为,则事件和事件是互斥事件,因为所以.(II)由题意有可能的取值为:2,3,4,5.所以随机变量的概率分布为2345因此的数学期望为()“一次取球所得计分介于20分到40分之间”的事件记为,则21(本小题满分12分)双曲线C与椭圆有相同的焦点,直线为C的一条渐近线。(1)求双曲线C的方程; (2)过点的直线,交双曲线C于A、B两点,交轴于Q点(Q点与C的顶点不重合),当,且时,求点的坐标。解:()设双曲线方程为 由椭圆 求得两焦点为,对于双曲线,又为双曲线的一条渐近线 解得 ,双曲线的方程为()解法一:由题意知直线的斜率存在且不等于零。设的方程:,则在双曲线上,同理有:若则直线过顶点,不合题意.是二次方程的两根.,此时.所求的坐标为.解法二:由题意知直线的斜率存在且不等于零设的方程,则.,分的比为.由定比分点坐标公式得下同解法一解法三:由题意知直线的斜率存在且不等于零设的方程:,则.,.,又,即将代入得,否则与渐近线平行。解法四:由题意知直线l得斜率k存在且不等于零,设的方程:,则,。同理.即。(*)又消去y得.当时,则直线l与双曲线得渐近线平行,不合题意,。由韦达定理有:代入(*)式得所求Q点的坐标为。22(本小题满分14分)已知,点在函数的图象上,其中(1)证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江宁波象山县爵溪自来水有限公司第一期招聘化验员1人笔试历年参考题库附带答案详解
- 2025新疆哈密二道湖天湖矿业有限责任公司招聘2人笔试历年参考题库附带答案详解
- 2025年中核南方新材料有限公司第五批社会招聘1人笔试历年参考题库附带答案详解
- 阳光书院小学语文试卷
- 2025四川长虹新能源科技股份有限公司招聘合规及效益审计岗位1人笔试历年参考题库附带答案详解
- 电影行业专业分析剧本创作与面试问题解析
- 电厂技术人员技能培训计划制定参考
- 2025河南周口市商水县招录警务助理人员体能测试备考题库含答案详解(巩固)
- 电商主管季度工作计划与销售增长方案
- 2025江西修水县投资集团有限公司招聘6人笔试历年参考题库附带答案详解
- 强制性条文执行计划
- 手术使用气压止血带
- (正式版)QBT 5998-2024 宠物尿垫(裤)
- MOOC 工程图学-中国矿业大学 中国大学慕课答案
- 小小汽车修理厂
- 2024-2025年上海中考英语真题及答案解析
- 结核性脊髓脊膜炎护理查房课件
- 2023年本班主任基本功大赛笔试题
- 《影视美学》课件
- 同济大学数学系《工程数学-线性代数》(第6版)配套题库【考研真题精选+章节题库】
- 《“安德的游戏”三部曲》读书笔记模板
评论
0/150
提交评论