




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小升初 中高考 高二会考 艺考生文化课 一对一辅导 (教师版) 学生姓名:韦舒婉年级:初三任教学科 数学 教学次数:4教学时间:2012-11-24;8-10指导教师:张芙华教学模式:一对一教学地点:滨湖联创 新区宝龙 胡埭校区上次课程学生存在的问题:学生问题的解决方案:要学新知识,复习函数部分压轴题大突破四课前巩固提高1已知点A(1,c)和点B (3,d )是直线yk1xb与双曲线y(k20)的交点(1)过点A作AMx轴,垂足为M,连结BM若AMBM,求点B的坐标;(2)设点P在线段AB上,过点P作PEx轴,垂足为E,并交双曲线y(k20)于点N当 取最大值时,若PN ,求此时双曲线的解析式【答案】(1)解:点A(1,c)和点B (3,d )在双曲线y(k20)上, ck23d 。 k20, c0,d0。 A(1,c)和点B (3,d )都在第一象限。 AM3d。过点B作BTAM,垂足为T。 BT2,TMd。 AMBM, BM3d。在RtBTM中,TM 2BT2BM2,即 d249d2, d。点B(3,)。(2) 点A(1,c)、B(3,d)是直线yk1xb与双曲线y(k20)的交点,ck2,,3dk2,ck1b,d3k1b。k1k2,bk2。 A(1,c)和点B (3,d )都在第一象限, 点P在第一象限。设P(x,k1xb), x2xx2x。当x1,3时,1,又当x2时, 的最大值是。1.。 PENE。 1。当x2时,的最大值是。由题意,此时PN, NE。 点N(2,) 。 k23。此时双曲线的解析式为y。【考点】反比例函数综合题,曲线上点的坐标与方程的关系,勾股定理,二次函数的最值。【分析】(1)过点B作BTAM,由点A(1,c)和点B(3,d)都在双曲线y(k20)上,得到c=3d,则A点坐标为(1,3d),在RtBTM中应用勾股定理即可计算出d的值,即可确定B点坐标。(2)P(x,k1xb),求出关于x的二次函数,应用二次函数的最值即可求得的最大值,此时根据PN求得NE,从而得到N(2,),代入y即可求得k23。因此求得反比例函数的解析式为y。2如图,已知直径为OA的P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3)(1) 求证:PODABO;(2) 若直线l:y=kx+b经过圆心P和D,求直线l的解析式【答案】(1)证明:连接PB,直径为OA的P与x轴交于O、A两点,点B、C把三等分,APB=DPO=180=60,ABO=POD=90。PA=PB,PAB是等边三角形。AB=PA,BAO=60,AB=OP,BAO=OPD。在POD和ABO中,OPD=BAO, OP=BA ,POD=ABO , PODABO(ASA)。(2)解:由(1)得PODABO,PDO=AOB。AOB=APB=60=30,PDO=30。OP=ODtan30=3。点P的坐标为:(,0)。点P,D在直线y=kx+b上, ,解得: 。 直线l的解析式为:y=x+3。【考点】圆周角定理,全等三角形的判定,锐角三角函数定义,直线上点的坐标与方程的关系。【分析】(1)首先连接PB,由直径为OA的P与x轴交于O、A两点,点B、C把三等分,可求得APB=DPO=60,ABO=POD=90,即可得PAB是等边三角形,可得AB=OP,然后由ASA,即可判定:PODABO。(2)易求得PDO=30,由OP=ODtan30,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式。3已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)【答案】解:()根据题意,OBP=90,OB=6。在RtOBP中,由BOP=30,BP=t,得OP=2t。OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=,t2=(舍去)点P的坐标为( ,6)。()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCP。OPB=OPB,QPC=QPC。OPB+OPB+QPC+QPC=180,OPB+QPC=90。BOP+OPB=90,BOP=CPQ。又OBP=C=90,OBPPCQ。由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11t,CQ=6m。(0t11)。()点P的坐标为(,6)或(,6)。【考点】翻折变换(折叠问题),坐标与图形性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质。【分析】()根据题意得,OBP=90,OB=6,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案。 ()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案。()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值: 过点P作PEOA于E,PEA=QAC=90。PCE+EPC=90。PCE+QCA=90,EPC=QCA。PCECQA。PC=PC=11t,PE=OB=6,AQ=m,CQ=CQ=6m,。,即,即。将代入,并化简,得。解得:。点P的坐标为(,6)或(,6)。4已知,AB是O的直径,点P在弧AB上(不含点A、B),把AOP沿OP对折,点A的对应点C恰好落在O上(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD直线AP于D,且CD是O的切线,证明:AB=4PD【答案】解:(1)PO与BC的位置关系是POBC。(2)(1)中的结论POBC成立。理由为:由折叠可知:APOCPO,APO=CPO。又OA=OP,A=APO。A=CPO。又A与PCB都为所对的圆周角,A=PCB。CPO=PCB。POBC。(3)证明:CD为圆O的切线,OCCD。又ADCD,OCAD。APO=COP。由折叠可得:AOP=COP,APO=AOP。又OA=OP,A=APO。A=APO=AOP。APO为等边三角形。AOP=60。又OPBC,OBC=AOP=60。又OC=OB,BC为等边三角形。COB=60。POC=180(AOP+COB)=60。又OP=OC,POC也为等边三角形。PCO=60,PC=OP=OC。又OCD=90,PCD=30。在RtPCD中,PD=PC,又PC=OP=AB,PD=AB,即AB=4PD。【考点】折叠的性质,圆心角、弧、弦的关系,圆周角定理,平行的判定和性质,切线的性质,全等三角形的性质,等腰三角形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质。【分析】(1)由折叠可得,由AOP=POC ;因为AOC和ABC是弧所对的圆心角和圆周角,根据同弧所对圆周角是圆心角一半的性质,得AOP=ABC;根据同位角相等两直线平行的判定,得PO与BC的位置关系是平行。(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出APO=CPO,再由OA=OP,利用等边对等角得到A=APO,等量代换可得出A=CPO,又根据同弧所对的圆周角相等得到A=PCB,再等量代换可得出COP=ACB,利用内错角相等两直线平行,可得出PO与BC平行。(3)由CD为圆O的切线,利用切线的性质得到OCCD,又ADCD,利用平面内垂直于同一条直线的两直线平行得到OCAD,根据两直线平行内错角相等得到APO=COP,再利用折叠的性质得到AOP=COP,等量代换可得出APO=AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出AOP三内角相等,确定出AOP为等边三角形,根据等边三角形的内角为60得到AOP=60,由OPBC,利用两直线平行同位角相等可得出OBC=AOP=60,再由OB=OC,得到OBC为等边三角形,可得出COB为60,利用平角的定义得到POC也为60,再加上OP=OC,可得出POC为等边三角形,得到内角OCP=60,可求出PCD=30,在RtPCD中,利用30所对的直角边等于斜边的一半可得出PD为PC的一半,而PC=圆的半径OP=直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证。5(2012江苏无锡10分)如图,菱形ABCD的边长为2cm,DAB=60点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动当P运动到C点时,P、Q都停止运动设点P运动的时间为ts(1)当P异于AC时,请说明PQBC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,P与边BC分别有1个公共点和2个公共点?【答案】解:(1)四边形ABCD是菱形,且菱形ABCD的边长为2,AB=BC=2,BAC=DAB。又DAB=60,BAC=BCA=30。如图1,连接BD交AC于O。四边形ABCD是菱形,ACBD,OA=AC。OB=AB=1。OA=,AC=2OA=2。运动ts后,AP=t,AO=t,。又PAQ=CAB,PAQCAB.APQ=ACB.PQBC.(2)如图2,P与BC切于点M,连接PM,则PMBC。在RtCPM中,PCM=30,PM=。由PM=PQ=AQ=t,即=t,解得t=,此时P与边BC有一个公共点。如图3,P过点B,此时PQ=PB,PQB=PAQ+APQ=60PQB为等边三角形。QB=PQ=AQ=t。t=1。当时,P与边BC有2个公共点。如图4,P过点C,此时PC=PQ,即 =tt=。当1t时,P与边BC有一个公共点。当点P运动到点C,即t=2时,Q、B重合,P过点B,此时,P与边BC有一个公共点。综上所述,当t=或1t或t=2时,P与菱形ABCD的边BC有1个公共点;当时,P与边BC有2个公共点。【考点】直线与圆的位置关系,菱形的性质,含30角直角三角形的性质,相似三角形的判定和性质,平行的判定,切线的性质,等边三角形的判定和性质。【分析】(1)连接BD交AC于O,构建直角三角形AOB利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知PAQCAB;然后根据“相似三角形的对应角相等”证得APQ=ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论。(2)分P与BC切于点M,P过点B,P过点C和点P运动到点C四各情况讨论即可。6如图,已知一次函数的图象与x轴相交于点A,与反比例函数的图象相交于B(1,5)、C(,d)两点点P(m,n)是一次函数的图象上的动点(1)求k、b的值;(2)设,过点P作x轴的平行线与函数的图象相交于点D试问PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围【答案】解:(1)将点B 的坐标代入,得 ,解得。 反比例函数解析式为。 将点C(,d)的坐标代入,得。C(,2)。 一次函数的图象经过B(1,5)、C(,2)两点, ,解得。(2)存在。 令,即,解得。A(,0)。 由题意,点P(m,n)是一次函数的图象上的动点,且 点P在线段AB 上运动(不含A、B)。设P()。 DPx轴,且点D在的图象上, ,即D()。 PAD的面积为。 S关于n的二次函数的图象开口向下,有最大值。 又n=,得,而。 当时,即P()时,PAD的面积S最大,为。 (3)由已知,P()。 易知mn,即,即。 若,则。 由题设,解出不等式组的解为。 若,则。 由题设,解出不等式组的解为。 综上所述,数a的取值范围为,。【考点】反比例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客车检车员培训考核试卷及答案
- 海盐采收工成本控制考核试卷及答案
- 电子废弃物处理工知识考核试卷及答案
- 灌区管理工数字化技能考核试卷及答案
- 水生植物疫病检疫员工艺考核试卷及答案
- 船舶钳工工艺创新考核试卷及答案
- 调理肉制品加工工成本控制考核试卷及答案
- 电子部件电路管壳制造工成本预算考核试卷及答案
- 销售数据分析与市场预测报告
- 商品理货员专业知识考核试卷及答案
- 电费代付款协议书
- 淋巴瘤PET-CT及PET-MR显像临床应用指南(2025版)解读课件
- 动物营养学-第七章-矿物质与动物营养详版课资
- 高中生纪律教育主题班会
- 初中班会课件《突围-目标成就未来》
- DBJ50-T-157-2022房屋建筑和市政基础设施工程施工现场从业人员配备标准
- 工程实体质量常见问题治理自评总结报告表格
- 《坚持的主题班会》课件
- 安全网络系统漏洞挖掘与修复考核试卷
- 消防应急预案桌面推演
- 《铁路轨道维护》课件-有砟道床外观作业
评论
0/150
提交评论