【期末复习】2020年九年级数学上册 期末复习专题 一元二次方程应用题 专练(含答案).doc_第1页
【期末复习】2020年九年级数学上册 期末复习专题 一元二次方程应用题 专练(含答案).doc_第2页
【期末复习】2020年九年级数学上册 期末复习专题 一元二次方程应用题 专练(含答案).doc_第3页
【期末复习】2020年九年级数学上册 期末复习专题 一元二次方程应用题 专练(含答案).doc_第4页
【期末复习】2020年九年级数学上册 期末复习专题 一元二次方程应用题 专练(含答案).doc_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【期末复习】2020年九年级数学上册 期末复习专题 一元二次方程应用题 专练有100米长的篱笆材料,想围成一个矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,现请你设计矩形仓库的长和宽,使它符合要求如图所示,在长30m,宽20m的花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)用12米长的木料,做成如图228的矩形窗框,则当长和宽各多少米时,矩形窗框的面积最大?最大面积是多少?要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的x与小亮设计方案中x的取值相同)春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?某村计划建造如图所示的长方形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3米宽的空地,其它三侧内墙各保留1米宽的通道,当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288平方米?某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元每提高一个档次,每件利润增加2元 ,但一天产量减少5件(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1x10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次如图,九年级学生要设计一幅幅宽20cm、长30cm的图案,其中有宽度相等的一横两竖的彩条如果要使彩条所占的面积是图案的一半求彩条的宽度在一幅长8分米,宽6分米的矩形风景画(如图)的外面四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图)如果要使整个挂图的面积是80平方分米,求金色纸边的宽 随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t若该养老中心建成后可提供养老床位200个,求t的值;求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克为了促销,该经营户决定降价销售经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克另外,每天的房租等固定成本共24元该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元. (1)求甲乙两件服装的进价各是多少元.(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率. (3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数). 某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件 (1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案参考答案 解:设小道进出口的宽度为x米(30-2x)(20-x)=532 解得:x=1,x=34(舍)答:小道进出口的宽度为1米.解:设窗框长为x米,则宽为=(4x)米,矩形窗框的面积为y=x(4x)=x24x=(x2)24.a=1242(1+10%),解得n295,因为n取最小正整数,所以n取296.所以当定价至少为296元时,乙服装才可获得利润.(1)设每件应降价x元,由题意可列方程为(40x)(30+2x)=1200, 解得x1=0,x2=25, 当x=0时,能卖出30件; 当x=25时,能卖出80件 根据题意,x=25时能卖出80件,符合题意 故每件衬衫应降价25元 (2)设商场每天盈利为W元 W=(40x)(30+2x)=2x2+50x+1200=2(x225x)+1200=2(x12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元解:(1)设家庭轿车拥有量的年平均增长率为x,则64(1+x)2=100解得%,(不合题意,舍去)100(1+25%)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论