预应力混凝土连续梁桥外文文献pdf.doc_第1页
预应力混凝土连续梁桥外文文献pdf.doc_第2页
预应力混凝土连续梁桥外文文献pdf.doc_第3页
预应力混凝土连续梁桥外文文献pdf.doc_第4页
预应力混凝土连续梁桥外文文献pdf.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DeformationAnalysisofPrestressedContinuousSteel-ConcreteCompositeBeamsJianguoNie1;MuxuanTao2;C.S.Cai3;andShaojingLi4Abstract:Deformationcalculationofprestressedcontinuoussteel-concretecompositebeamsaccountingfortheslipeffectbetweenthesteelandconcreteinterfaceunderserviceloadsisanalyzed.Asimpliedanalyticalmodelispresented.Basedonthismodel,formulasforpredictingthecrackingregionofconcreteslabneartheinteriorsupportsandtheincreaseoftheprestressingtendonforcearederived.Atable for calculating the midspan deection of two-span prestressed continuous composite beams is also proposed. It is found that theinternalforceoftheprestressingtendonunderserviceloadscanbeaccuratelycalculatedusingtheproposedformulas.Byignoringtheincreaseofthetendonforce,thecalculateddeectionareoverestimated,andconsideringtheincreaseofthetendonforcecansignicantlyimprovetheaccuracyofanalyticalpredictions.Asthecalculatedvaluesshowgoodagreementwiththetestresults,theproposedformulascan be reliably applied to the deformation analysis of prestressed continuous composite beams. Finally, based on the formulas forcalculating the deformation of two-span prestressed continuous composite beams, a general method for deformation analysis of pre-stressedcontinuouscompositebeamsisproposed.DOI:10.1061/ASCEST.1943-541X.0000067CEDatabasesubjectheadings:Prestressedconcrete;Compositebeams;Deformation;Deection;Cracking;Concreteslabs;Con-tinuousbeams.Introduction2 increasing the ultimate loading capacity; 3 decreasing thedeformation under service loads; 4 being favorable in crack-widthcontrol;5fullyusingthematerialsandthusreducingthestructural height and overall dead load; and 6 improving thefatigueandfracturebehavior.Continuous steel-concrete composite beams are widely used inbuildingsandbridgesforhigherspan/depthratiosandlessdeec-tionetc.,whichresultsinsuperioreconomicalperformancecom-pared with simply supported composite beams. For continuouscomposite beams, negative bending near interior supports willresultinearlycrackingofconcreteslabandreductionofstiffness.Whenbeamsaredesignedforspanlengthsandloadsgreaterthanusual, the requirement of serviceability limit state due to unac-ceptabledeectionandcrackwidthwouldrequireusingprestress-ingtechnique.Since Szilard 1959 suggested a method for the design andanalysisofprestressedsteel-concretecompositebeamsconsider-ingtheeffectsofconcreteshrinkageandcreep,manyresearchershave developed methods for analyzing the behavior of simplysupportedprestressedcompositebeamsHoadley1963;Klaiberetal.1982;Dunkeretal.1986;Saadatmanesh1986;Saadatmaneshetal.1989a,b,c;Albrechtetal.1995,Nieetal.2007 .However,continuous prestressed composite beams have not been re-searched until the late 1980s Troitsky and Rabbani 1987;Troitsky 1990; DallAsta and Dezi 1998, Ayyub et al. 1990,1992a,b;DallAstaandZona2005.Asaresult,prestressedcon-tinuouscompositebeamshavenotwidelybeenusedpartlyduetothelackofdesigntheory.In fact, the behavior of prestressed continuous compositebeamsdependsontheinteractionbetweenfourmaincomponents:thereinforcedconcreteslab,thesteelproleofbeams,theshearconnections, and the prestressing tendons, which makes pre-stressedcontinuouscompositebeamsmorecomplexthanconven-tional ones. DallAsta and Zona 2005 proposed a nonlinearniteelementmodelsimulatingthebehaviorofprestressedcon-tinuouscompositebeamsaccurately.Thisnumericalapproachisavery powerful research tool for analyzing the externally pre-stressedstructures,butitperhapsistoocomplicatedforaroutinedesignpractice.Comparedwithconventionalsteel-concretecompositebeams,prestressedsteel-concretecompositebeamshaveafewmajorad-vantages: 1 extending the elastic range of structural behavior;1Professor,Dept.ofCivilEngineering,KeyLaboratoryofStructuralEngineeringandVibrationofChinaEducationMinistry,TsinghuaUniv.,Beijing100084,China.2Ph.D. Candidate, Dept. of Civil Engineering, Key Laboratory ofStructural Engineering and Vibration of China Education Ministry,Tsinghua Univ., Beijing 100084, China corresponding author . E-mail:3AssociateProfessor,Dept.ofCivilandEnvironmentalEngineering,LouisianaStateUniv.,BatonRouge,LA,70803;presently,AdjunctPro-fessor,SchoolofCivilEngineeringandArchitecture,ChangshaUniv.ofScienceandTechnology,Changsha,China.4Formerly,GraduateStudent,Dept.ofCivilEngineering,KeyLabo-ratoryofStructuralEngineeringandVibrationofChinaEducationMin-istry,TsinghuaUniv.,Beijing100084,China.Note.ThismanuscriptwassubmittedonAugust10,2008;approvedon April 20, 2009; published online on October 15, 2009. DiscussionperiodopenuntilApril1,2010;separatediscussionsmustbesubmittedfor individual papers. This paper is part of the Journal of StructuralEngineering,Vol.135,No.11,November1,2009.ASCE,ISSN0733-9445/2009/11-13771389/$25.00.Asprestressingtechniqueisaneffectivewaytoreducedefor-mation and crack width under service loads, particular attentionhastobepaidtothedeformationcalculationofprestressingcon-tinuouscompositebeams.Themainobjectiveofthisresearchistodevelopcalculationmethodsforthedeformationofprestress-ing continuous composite beams based on the reduced stiffnessJOURNALOFSTRUCTURALENGINEERINGASCE/NOVEMBER2009/1377Downloaded 19 Feb 2012 to 30. Redistribution subject to ASCE license or copyright. Visit Thedownwardconcentratedforceappliedbytendonsattheinte-rior support is not shown in the gure as the force is applieddirectlyonthesupport.Therigidityalongthebeamcanbecon-sideredasunchangedinthisstagesincethecrackingofconcreteusually does not occur.The section properties can be calculatedby the transformed section method ignoring the slip effect be-tweensteelandconcreteinterfaceatthisstage.Itisassumedthatthedistributionofmomentalongthebeamduetotheprestressingforcekeepsunchanged.Oncealltheparametershavebeendeter-mined,deformationintherststage f1canbedirectlycalculatedbymethodsofstructuremechanics.Fig.1.Sketchoftwo-spanprestressedcontinuouscompositebeammethodthatwasdevelopedforconventionalcontinuouscompos-itebeamsNieandCai2003.Theproposedmethod,veriedbytestresults,issuitablefordesignpractice.In the second stage shown in Fig. 2b, application of theexternal force P results in the increase of downward deectionf andachangeofprestressingtendonforceT.Intheregionof2TheoreticalStudysaggingmoment,thereducedexuralstiffnessB=E1I1/1+ isusedduetotheslipeffects,whereisstiffnessreductioncoef-cient according to the reduced stiffness method Nie and Cai2003,andtheaxialstiffnessEAiscalculatedbythetransformedsectionmethod.IntheregionofhoggingmomentintherangeofnL neareachsideoftheinteriorsupports,concreteisconsideredno longer in service due to cracking. In this case the bendingrigidityE2I2 andaxialrigidityE2A2 canonlyincludethecontri-butionofthereinforcementandsteelmaterials,andparameterandaredenedas=B/E2I2,and=EA/E2A2.Actually,inthesecondstage,concreteinthehoggingmomentmaystillcontributetostiffnessbecauseoftheprestressingforce.Therefore, the partial interaction between the steel and concreteshould be considered for a rational analysis. For simplicity, thiskind of interaction effect is considered in the present study byadjustingthevalueofnL insteadofactuallymodifyingthestiff-nessofcompositebeamsnearthesupports,whichresultsinonlysmallerrorsaswillbeveriedbytheexperimentsanddiscussedlater.AnalyticalModelPrestressed continuous composite beams discussed in this paperareshowninFig.1wheretheprestressingtendonsarelaidoutasfold lines or straight lines for the convenience of construction.Thestraightlinescanbeconsideredasaspecialcaseofthefold-linetypewith=0incalculation.Thepositionoftendonscanbeeitherinternalorexternal,whichwillnotinuencethemethodofanalysis.Thus,theresearchinterestinthispaperisconcentratedonatwo-spanprestressedcontinuouscompositebeamwithfold-line tendons as shown in Fig. 1, and the methodology can beappliedtootherkindsofprestressedcontinuouscompositebeams.Thecalculationmodelofprestressedsteel-concretecompositebeamsisshowninFig.2.Theprocessofloadingcanbedividedinto two stages. In the rst stage shown in Fig. 2a, beams areinitially prestressed by tendons and the equivalent loads appliedto the continuous beams by tendons are composed of two parts.TherstpartincludesaxialcompressionforceT andmoment0T0e0atthebeamends,wheree0=distancefromthebeamanchortotheneutralaxisofthetransformedsection,positivebelowneu-tral axis. The second part includes vertical concentrated loadsappliedbytendons.ForceequilibriumshowninFig.3givesthevalueoftheequivalentconcentrateforceFappliedbythetendonsasT0sin,whichequalstoT0approximatelyasisverysmall.Inordertoobtainthedeectionofthecompositebeamsinthisstage, the length of cracking region of concrete slab at interiorsupports, dened by n, should be determined rst. For conven-tionalcontinuouscompositebeams,itisfoundinpreviousstudiesandexperimentsthattaking0.15forthenvaluewillbeaccurateenough for design Nie et al. 2004. However, for prestressedcontinuous composite beams, the length of cracking region ofconcreteslabissmallerthantheconventionones.Furthermore,nisrelatedtotheprestressingdegreedirectly,whichhasbeenveri-ed by tests. The other parameter T is also very essential forcalculatingthedeection.Since the materials are generally linear elastic under serviceload conditions, the principle of superposition can be used toobtainthetotaldeectionas f1+f2,where f1canbecalculateddirectlybymethodsofstructuralmechanics.Inthisstudy,wearemore concerned about the increase of deection under serviceloads, i.e., f2. Therefore, this paper will only investigate theincrease of deection in the second stage, and for convenience,f2 will be rewritten as f hereafter.According to the discussionmadeabove,thecoreofdeformationcalculationistodeterminethe values of n and T, which will be discussed further in thefollowingparts.Fig. 2. Calculation model of prestressed continuous steel-concretecompositebeam:arstloadingstage;bsecondloadingstageThecableslipatthesaddlepointsisacomplexbehavioroftheexternally prestressed composite beams. The slip friction at thesaddle points can inuence the behavior of beams under serviceloads. Negligible friction occurs by using individually coatedsingle-strand tendons Conti et al. 1993 and the assumption ofnegligiblefrictioncanbefoundinthepreviousmodelDallAstaand Zona 2005. This assumption is also used in the followinganalyticalstudies.Fig.3.Equivalentloadappliedtothebeambytendons1378/JOURNALOFSTRUCTURALENGINEERINGASCE/NOVEMBER2009Downloaded 19 Feb 2012 to 30. Redistribution subject to ASCE license or copyright. Visit 51Mk=0.85Mek= m1mPkL640where Mek=moment due to Pk ignoring the moment redistribu-tion.The relationship between the service load and the initial pre-stressingforcecanbederivedusingEqs.5and6as 40T051m1mL 2eW20T017 0Pk=+7AUndertheapplicationofexternalforceandprestressingforce,thedistributionofmomentalongthebeamisshownasFigs.4 bandc, respectively. The tension stress at the top of concrete at theboundaryofthecrackingregionequalstozero,whichleadstoMTx=nL+MPx=nLT=08WAFig.4.Theoreticalanalysisofthelengthofcrackingregionofcon-creteslab:acalculationmodeloftwo-spanprestressedcontinuouscompositebeams;bmomentdistributionduetoprestressingtendonforce;andcmomentdistributionduetoexternalloadswhere T=tendon force under service load conditions. Comparedwiththeinitialprestressingforce,theincreaseoftendonforceisrelatively small, and T can be taken proximately as T0; MTx=moment distribution along the beam due to the prestressingforce,andMPx=momentdistributionalongthebeamduetotheserviceload.TheyarecalculatedasPredictionofCrackingRegionofConcreteSlabx=3Te02 Lx21Te0+ 23m2+32m+1 TxIn this part, the length of cracking region of concrete slab overinteriorsupportswillbetheoreticallyanalyzedbasedonthecal-culation model shown in Fig. 4a. After the initial force T0 isprestressed,astructuralanalysisgivesthesaggingmomentattheinteriorsupportasMT23m1mTL0xnL951405151=T0e0+32m1mT0LMPx=m240m1 Pkx+ m1mPkL0xnLMT0140210Accordingly,theinitialcompressivestressatthetopofconcreteslabattheinteriorsupportiscalculatedasIntroducing Eqs. 7, 9, and 10 into Eq. 8 leads to the ex-pressionofnasafunctionofpc=MT0+T0=AT0e0+2W3m1mT0L2W+TA2A10n=BCA11Wwhere W=section modulus of transformed composite section atthe top of concrete ange and A=cross-sectional area of trans-formedsection.ThemomentneededtoeliminatethecompressivestressattheinteriorsupportisobtainedaswhereA,B,andCcanbecalculatedas1W+321mme0LA=2+Ae0 3331 mL+mB=2+ m+22e0M0=pcW=12T0e0+32m1mT0L+TA0W3C=51m251m4051m251mTheprestressingdegreeisdenedas=MM40From Eq. 11 we can see that the main factors inuencing therangeofconcretecrackingregionincludetheprestressingdegree,theparameterW/Ae0,theparametermL/e0,andtheloadingpositionm.TheireffectsonnareplottedinFigs.57.FromFigs.57 we can see that the length of concrete cracking region fallsmoreandmorequicklyastheprestressingdegreerises.Whentheprestressingdegreeistakenas1,thelengthofconcretecrackingregion is zero, referred to as fully prestressed composite beams.Similarly,azerooftheprestressingdegreeresultsinthelengthofconcrete cracking region being as 1/C, which depends only ontheloadingpositionmandcorrespondstoconventionalcompositebeams. Fig. 5 indicates how n varies within the usual range ofparameter W/Ae0 when the other parameters are xed. It iskwhereMk=momentattheinteriorsupportduetoserviceload Pkexcludingprestressingeffect.IntroducingEq.3intoEq.4givesMk=T20e0+3m1mT0L+T0W52AIt is found in experiments that the moment redistribution coef-cientaattheinteriorsupportcanreachabout15%underserviceloadconditions.Therefore,15%isusedtocalculatethemomentattheinteriorsupportunderserviceloadsapproximatelyasJOURNALOFSTRUCTURALENGINEERINGASCE/NOVEMBER2009/1379Downloaded 19 Feb 2012 to 30. Redistribution subject to ASCE license or copyright. Visit Fig.5.InuenceofparameterW/Ae0onnFig. 8. Comparison among test results, theoretical results and sim-pliedtheoreticalresultsfoundthattheinuenceofparameterW/Ae0onnisveryslightandcanbeignored.In most cases, the neutral axis in the region of positive mo-mentisadjacenttothesteeltopange,andtheprestressingten-dons are adjacent to the steel bottom ange. According to thesketchshowninFig.1,mLrepresentstheverticaldistancefromthebeamanchortothecenteroftendonstakenproximatelyasthepositionofthesteelbottomange,leadingtothefollowing:gion,andinlowprestressingdegreeregionitvariesfrom0.15to0.20approximatelywhenmvarieswithintheusualrange.Sincetheactuallengthofconcretecrackingregionisslightlyshorter than the theoretical result due to the assumption that thetensile strength of concrete and the increase of tendon force arenegligible, Eq. 11 should be modied to a certain extent. Fur-thermore, except for , the other three parameters all slightlyinuencethen value.Thus,Eq.11canbesimpliedconsider-ingthefollowingfactors:mL+e0hsmLhs112e0 e01.RelationshipformatbetweennandasdenedbyEq.11is maintained by adjusting only the coefcient in the equa-tion.Sincetheheightofthesteelbeamh isabout4to8timesofthesanchoreccentricitye0,theparametermL/e0variesfrom3to7.WithinthisrangewecanconcludefromFig.6thatthevariationofparametermL/e0willnotsignicantlyinuencethevalueofn.2.3.Thenewequationcanreducetoconventionalnonprestressedcase,i.e.,when=0,n =0.15.The parameter W/Ae0 and mL/e0 can be taken as theaveragevalueswithintheusualrange.Consequently,Eq.11issimpliedasFig. 7 shows how the loading position m inuences the nvalue.The n approaches to unity in high prestressing degree re-n=14320113Thecomparisonbetweentestresultsdiscussedlater ,theoreticalresults, and simplied modied theoretical results is shown inFig.8,whichprovesthatEq.13isreasonableandaccurateforthecalculation.PredictionofTendonForceTheincrementoftendonforceduetoexternalloadscanbepre-dicted by developing the equilibrium equation, the deformationcompatibilityequation,andthephysicalequationforthestructuresystem.Theexternalloadsmainlyresultinbeammomentswhosedistribution depends on the loading conditions. The change ofprestressing tendon forces mainly result in axial forces and mo-ments, which can be solved by a simple structural analysis asshowninFig.9.Fig.6.InuenceofparameterL/e0onnTheeffectofprestressingforceincrementTisresolvedintotwo parts in Fig. 9a, namely the equivalent vertical forces andhorizontalaxialforcesatbeamends.Thepositionchangeofneu-tralaxisintheregionofhoggingmomentneartheinteriorsupportinuencesthemomentdistributionduetoprestressingforce.Asaresult,acoefcient=e02/e0isdenedheretodescribeit,wheree02representstheverticaldistancefromtheprestressingtendontotheelasticneutralaxisintheregionofhoggingmomentasshowninFig.9awithpositiveforbeingbelowtheneutralaxis.In order to solve the expression of R1 and R2 in Fig. 9a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论