




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题:三角函数与向量的交汇题型分析及解题策略【典例分析】题型一三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】把函数ysin2x的图象按向量(,3)平移后,得到函数yAsin(xj)(A0,0,|j|)的图象,则j和B的值依次为( )A,3B,3C,3D,3题型二三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】已知A、B、C为三个锐角,且ABC.若向量(22sinA,cosAsinA)与向量(cosAsinA,1sinA)是共线向量.()求角A;()求函数y2sin2Bcos的最大值.题型三三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】已知向量(3sin,cos),(2sin,5sin4cos),(,2),且()求tan的值;()求cos()的值题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|22,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】已知向量(cos,sin),(cos,sin),|.()求cos()的值;()若0,且sin,求sin的值.题型五三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.20090318【例5】设函数f(x).其中向量(m,cosx),(1sinx,1),xR,且f()2.()求实数m的值;()求函数f(x)的最小值.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】已知角A、B、C为ABC的三个内角,其对边分别为a、b、c,若(cos,sin),(cos,sin),a2,且()若ABC的面积S,求bc的值()求bc的取值范围 【专题训练】一、选择题1已知(cos40,sin40),(cos20,sin20),则( )A1BCD2将函数y2sin2x的图象按向量(,)平移后得到图象对应的解析式是( )A2cos2xB2cos2xC2sin2xD2sin2x3已知ABC中,若0,则ABC是( )A钝角三角形B直角三角形C锐角三角形D任意三角形4设(,sina),(cosa,),且,则锐角a为( )A30B45C60D755已知(sin,),(1,),其中(,),则一定有( )ABC与夹角为45D|6已知向量(6,4),(0,2),l,若C点在函数ysinx的图象上,实数l( )ABCD7由向量把函数ysin(x)的图象按向量(m,0)(m0)平移所得的图象关于y轴对称,则m的最小值为( )ABCD8设02时,已知两个向量(cos,sin),(2sin,2cos),则向量长度的最大值是( )ABC3D29若向量(cosa,sina),(cosb,sinb),则与一定满足( )A与的夹角等于abBCD()()10已知向量(cos25,sin25),(sin20,cos20),若t是实数,且t,则|的最小值( )AB1CD11O是平面上一定点,A、B、C是该平面上不共线的3个点,一动点P满足:l(),l(0,),则直线AP一定通过ABC的( )A外心B内心C重心D垂心2009031812对于非零向量我们可以用它与直角坐标轴的夹角a,b(0ap,0bp)来表示它的方向,称a,b为非零向量的方向角,称cosa,cosb为向量的方向余弦,则cos2acos2b( )A1BCD0二、填空题13已知向量(sinq,2cosq),(,).若,则sin2q的值为_14已知在OAB(O为原点)中,(2cosa,2sina),(5cosb,5sinb),若5,则SAOB的值为_.15将函数f(x)tan(2x)1按向量a平移得到奇函数g(x),要使|a|最小,则a_.16已知向量(1,1)向量与向量夹角为,且1.则向量_三、解答题17在ABC中,角A、B、C的对边分别为a、b、c,若k(kR).()判断ABC的形状;()若c,求k的值18已知向量(sinA,cosA),(,1),1,且为锐角.()求角A的大小;()求函数f(x)cos2x4cosAsinx(xR)的值域19在ABC中,A、B、C所对边的长分别为a、b、c,已知向量(1,2sinA),(sinA,1cosA),满足,bca.()求A的大小;()求sin(B)的值20已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cos,3sin).()若(,0),且|,求角的大小;()若,求的值21ABC的角A、B、C的对边分别为a、b、c,(2bc,a),(cosA,cosC),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Culture Understanding说课稿-2025-2026学年中职基础课-基础模块2-高教版(2023修订版)-(英语)-52
- 专题范文材料供应合同范本12篇
- 《三、组内交流》说课稿 -2024-2025学年初中信息技术人教版七年级上册
- 涉烟刑法知识培训课件
- 一、质量及其测量教学设计初中物理苏科版2024八年级下册-苏科版2024
- 八年级地理下册 第十章 第一节 辽阔的海域说课稿(新版)商务星球版
- 涉水产品知识培训总结课件
- 2025年质量月知识竞赛题库含答案
- 涉外知识产权培训活动总结
- 8.3俄罗斯(第2课时)说课稿 2023-2024学年湘教版初中地理七年级下册
- 蓝点网络分账解决方案
- GB/T 24186-2022工程机械用高强度耐磨钢板和钢带
- GB/T 22315-2008金属材料弹性模量和泊松比试验方法
- GB/T 17980.37-2000农药田间药效试验准则(一)杀线虫剂防治胞囊线虫病
- 血管活性药物(ICU)课件
- 旅游饭店服务技能大赛客房服务比赛规则和评分标准
- “手电筒”模型-高考数学解题方法
- GB∕T 2980-2018 工程机械轮胎规格、尺寸、气压与负荷
- TTAF 068-2020 移动智能终端及应用软件用户个人信息保护实施指南 第8部分:隐私政策
- DB22T 5036-2020 建设工程项目招标投标活动程序标准
- 《增殖工程与海洋牧场》人工鱼礁场的配置课件
评论
0/150
提交评论