




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012年全国中考数学选择填空解答压轴题分类解析汇编专题2:几何问题一、选择题1. (2012上海市4分)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是【 】A外离B相切C相交D内含【答案】D。【考点】圆与圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,两个圆的半径分别为6和2,圆心距为3,62=4,43,即两圆圆心距离小于两圆半径之差,这两个圆的位置关系是内含。故选D。2. (2012安徽省4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是【 】A.10 B. C. 10或 D.10或【答案】C。【考点】图形的剪拼,直角三角形斜边上中线性质,勾股定理【分析】考虑两种情况,分清从斜边中点向哪个边沿着垂线段过去裁剪的。根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长:如左图:,点E是斜边AB的中点,AB=2CE=10 。如右图:,点E是斜边AB的中点,AB=2CE=。因此,原直角三角形纸片的斜边长是10或。故选C。3. (2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】A5 B6 C11 D16【答案】C。【考点】三角形三边关系。【分析】设此三角形第三边的长为x,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得104x10+4,即6x14,四个选项中只有11符合条件。故选C。4. (2012广东珠海3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为【 】A. 30 B. 45 C 60 D90【答案】C。【考点】弧长的计算。【分析】根据弧长公式,即可求解设圆心角是n度,根据题意得,解得:n=60。故选C。5. (2012浙江宁波3分)勾股定理是几何中的一个重要定理在我国古算书周髀算经中就有“若勾三,股四,则弦五”的记载如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理图2是由图1放入矩形内得到的,BAC=90,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为【 】A90B100C110D121【答案】C。【考点】勾股定理的证明。【分析】如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7。所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为1011=110。故选C。6. (2012江苏宿迁3分)在平面直角坐标系中,若将抛物线y=2x2 - 4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是【 】A.(2,3)B.(1,4)C.(1,4)D.(4,3)【答案】D。【考点】坐标平移。【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。上下平移只改变点的纵坐标,下减上加。因此,将抛物线y=2x2 - 4x+3先向右平移3个单位长度,再向上平移2个单位长度,其顶点也同样变换。 的顶点坐标是(1,1), 点(1,1)先向右平移3个单位长度,再向上平移2个单位长度,得点(4,3),即经过这两次平移后所得抛物线的顶点坐标是(4,3)。故选D。7. (2012福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【 】A B C D3 【答案】B。【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。【分析】正方形纸片ABCD的边长为3,C=90,BC=CD=3。根据折叠的性质得:EG=BE=1,GF=DF。设DF=x,则EF=EGGF=1x,FC=DCDF=3x,EC=BCBE=31=2。在RtEFC中,EF2=EC2FC2,即(x1)2=22(3x)2,解得:。DF= ,EF=1。故选B。8. (2012湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【 】ABCD【答案】A。【考点】由三视图判断几何体。【分析】一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,即要这个几何体的三视图分别是正方形、圆和正三角形。符合此条件的只有选项A:主视图是正方形,左视图是正三角形,俯视图是圆。故选A。9. (2012福建泉州3分)如图,点O是ABC的内心,过点O作EFAB,与AC、BC分别交于点E、F,则【 】A .EFAE+BF B. EFAE+BF C.EF=AE+BF D.EFAE+BF 【答案】C。【考点】三角形内心的性质,切线的性质,平行的性质,全等三角形的判定和性质。【分析】如图,连接圆心O和三个切点D、G、H,分别过点E、F作AB的垂线交AB于点I、J。EFAB,HEO=IAE,EI=OD。 又OD=OH,EI=OH。 又EHO=AIE=900,EHOAIE(AAS)。EO=AE。 同理,FO=BF。AE+BF= EO+FO= EF。故选C。10. (2012湖南长沙3分)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是【 】A1个 B2个 C3个 D4个【答案】B。【考点】构成三角形的三边的条件。【分析】四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9,根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,只有3,7,9和4,7,9能组成三角形。故选B。二、填空题1. (2012北京市4分)在平面直角坐标系中,我们把横 、纵坐标都是整数的点叫做整点已知点A(0,4),点B是轴正半轴上的整点,记AOB内部(不包括边界)的整点个数为m当m=3时,点B的横坐标的所有可能值是 ;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示)【答案】3或4;6n3。【考点】分类归纳(图形的变化类),点的坐标,矩形的性质。【分析】根据题意画出图形,再找出点B的横坐标与AOB内部(不包括边界)的整点m之间的关系即可求出答案:如图:当点B在(3,0)点或(4,0)点时,AOB内部(不包括边界)的整点为(1,1),(1,2),(2,1),共三个点,当m=3时,点B的横坐标的所有可能值是3或4。当点B的横坐标为4n(n为正整数)时,以OB为长OA为宽的矩形内(不包括边界)的整点个数为(4n1)3=12 n3,对角线AB上的整点个数总为3,AOB内部(不包括边界)的整点个数m=(12 n33)2=6n3。2. (2012广东汕头4分)如图,在ABCD中,AD=2,AB=4,A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 (结果保留)【答案】。【考点】平行四边形的性质,扇形面积的计算【分析】过D点作DFAB于点F。 AD=2,AB=4,A=30,DF=ADsin30=1,EB=ABAE=2。阴影部分的面积=平行四边形ABCD的面积扇形ADE面积三角形CBE的面积=。3. (2012广东深圳3分)如图,RtABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 【答案】7。【考点】正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理。【分析】如图,过O作OF垂直于BC,再过O作OFBC,过A作AMOF,四边形ABDE为正方形,AOB=90,OA=OB。AOM+BOF=90。又AMO=90,AOM+OAM=90。BOF=OAM。在AOM和BOF中,AMO=OFB=90,OAM=BOF, OA=OB,AOMBOF(AAS)。AM=OF,OM=FB。又ACB=AMF=CFM=90,四边形ACFM为矩形。AM=CF,AC=MF=5。OF=CF。OCF为等腰直角三角形。OC=6,根据勾股定理得:CF2+OF2=OC2,即2CF2=(6)2,解得:CF=OF=6。FB=OM=OFFM=65=1。BC=CF+BF=6+1=7。4. (2012广东珠海4分)如图,AB是O的直径,弦CDAB,垂足为E,如果AB=26,CD=24,那么sinOCE= 【答案】。【考点】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CDAB,根据垂径定理得出CE=12;在RtOCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sinOCE的度数:。5. (2012浙江宁波3分)如图,ABC中,BAC=60,ABC=45,AB=2,D是线段BC上的一个动点,以AD为直径画O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 【答案】。【考点】垂线段的性质,垂径定理,圆周角定理,解直角三角形,锐角三角函数定义,特殊角的三角函数值。【分析】由垂线段的性质可知,当AD为ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20EsinEOH=20Esin60,当半径OE最短时,EF最短。如图,连接OE,OF,过O点作OHEF,垂足为H。 在RtADB中,ABC=45,AB=2,AD=BD=2,即此时圆的直径为2。由圆周角定理可知EOH=EOF=BAC=60,在RtEOH中,EH=OEsinEOH=1。由垂径定理可知EF=2EH=。6. (2012江苏泰州3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tanAPD的值是 【答案】2。【考点】正方形的性质,相似三角形的判定和性质,锐角三角函数的定义。【分析】如图,连接BE,交CD于点F。四边形BCED是正方形,DF=CF=CD,BF=BE,CD=BE,BECD,BF=CF。根据题意得:ACBD,ACPBDP。DP:CP=BD:AC=1:3。DP=PF=CF= BF。在RtPBF中,。APD=BPF,tanAPD=2。7. (2012福建福州4分)如图,已知ABC,ABAC1,A36,ABC的平分线BD交AC于点D,则AD的长是 ,cosA的值是 (结果保留根号)【答案】;。【考点】黄金分割,等腰三角形的性质,三角形内角和定理,相似三角形的判定和性质,锐角三角函数的定义。【分析】可以证明ABCBDC,设ADx,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D作DEAB于点E,则E为AB中点,由余弦定义可求出cosA的值: 在ABC中,ABAC1,A36, ABCACB72。 BD是ABC的平分线, ABDDBCABC36。 ADBC36。又CC, ABCBDC。 。设ADx,则BDBCx则,解得:x(舍去)或。x 。如图,过点D作DEAB于点E, ADBD,E为AB中点,即AEAB。在RtAED中,cosA。8. (2012湖北宜昌3分)已知O的半径为5,圆心O到直线l的距离为3,则反映直线l与O的位置关系的图形是【 】A B C D【答案】B。【考点】直线与圆的位置关系。1419956【分析】根据直线与圆的位置关系来判定:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr(d为直线与圆的距离,r为圆的半径)。因此,O的半径为5,圆心O到直线l的距离为3,53,即:dr,直线L与O的位置关系是相交。故选B。9. (2012湖北襄阳3分)在等腰ABC中,A=30,AB=8,则AB边上的高CD的长是 【答案】4或或。【考点】等腰三角形的性质,含30度角的直角三角形的性质,锐角三角函数定义,特殊角的三角函数值。【分析】根据题意画出AB=AC,AB=BC和AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可:(1)如图,当AB=AC时,A=30,CD=AC=8=4。(2)如图,当AB=BC时,则A=ACB=30。ACD=60。BCD=30CD=cosBCDBC=cos308=4。(3)如图,当AC=BC时,则AD=4。CD=tanAAD=tan304=。综上所述,AB边上的高CD的长是4或或。10. (2012湖南长沙3分)如图,等腰梯形ABCD中,ADBC,AB=AD=2,B=60,则BC的长为 【答案】4。【考点】等腰梯形的性质,平行四边形的判定和性质,等边三角形的判定和性质。【分析】过点A作AECD交BC于点E,ADBC,四边形AECD是平行四边形。AE=CD=2,AD=EC=2。B=60,ABE是等边三角形。BE=AB=AE=2。BC=BE+CE=2+2=4。三、解答题1. (2012山东淄博9分)在矩形ABCD中,BC=4,BG与对角线AC垂直且分别交AC,AD及射线CD于点E,F,G,AB=x(1)当点G与点D重合时,求x的值;(2)当点F为AD中点时,求x的值及ECF的正弦值【答案】解:(1)当点G与点D重合时,点F也与点D重合。矩形ABCD中,ACBD,四边形ABCD是正方形。BC=4,x= AB= BC=4。(2)点F为AD中点,BC=4,AF=2。 矩形ABCD中,ADBC,AEFBEB。 。矩形ABCD中,ABC=BAF=900, 在RtABC和RtBAF中由勾股定理得, 即。 两式相加,得。 又ACBG,在RtABE中,。 ,解得(已舍去负值)。 。 在RtCEF中由勾股定理得。 。【考点】矩形的性质,正方形的判定和性质,相似三角形的判定和性质,勾股定理,锐角三角函数定义。【分析】(1)由点G与点D重合得出四边形ABCD是正方形即可求得x的值。 (2)由点F为AD中点和矩形的性质,得AEFBEB,从而得。在RtABC、 RtBAF和RtABE应用勾股定理即可求得x的值。在RtCEF中应用勾股定理求得CF,根据锐角三角函数定义即可求得ECF的正弦值。2. (2012山西省12分)问题情境:将一副直角三角板(RtABC和RtDEF)按图1所示的方式摆放,其中ACB=90,CA=CB,FDE=90,O是AB的中点,点D与点O重合,DFAC于点M,DEBC于点N,试判断线段OM与ON的数量关系,并说明理由探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,CA=CB,CO是ACB的角平分线(依据1)OMAC,ONBC,OM=ON(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1: 依据2: (2)你有与小宇不同的思考方法吗?请写出你的证明过程拓展延伸:(3)将图1中的RtDEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程【答案】(1)解:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合);角平分线上的点到角的两边距离相等。(2)证明:CA=CB,A=B。O是AB的中点,OA=OB。DFAC,DEBC,AMO=BNO=90。在OMA和ONB中,A=B,OA=OB,AMO=BNO,OMAONB(AAS)。OM=ON。(3)解:OM=ON,OMON。理由如下:连接CO,则CO是AB边上的中线。ACB=90,OC=AB=OB。又CA=CB,CAB=B=45,1=2=45,AOC=BOC=90。2=B。BNDE,BND=90。又B=45,3=45。3=B。DN=NB。ACB=90,NCM=90。又BNDE,DNC=90。四边形DMCN是矩形。DN=MC。MC=NB。MOCNOB(SAS)。OM=ON,MOC=NOB。MOCCON=NOBCON,即MON=BOC=90。OMON。【考点】等腰三角形的性质,角平分线的性质,全等三角形的判定和性质,矩形的判定和性质。【分析】(1)根据等腰三角形和角平分线的性质直接作答。(2)利用AAS证明OMAONB即可。(3)利用SAS证明MOCNOB即可得到OM=ON,MOC=NOB。通过角的等量代换即可得MON=BOC=90,而得到OMON。3. (2012福建厦门10分)已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PEAC、PFBD,垂足分别为E、F,PEPF(1)如图,若PE,EO1,求EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF BC34,求BC的长【答案】解:(1)连接PO , PEPF,POPO,PEAC、PFBD, RtPEORtPFO(HL)。EPOFPO。在RtPEO中, tanEPO, EPO30。 EPF60。(2)点P是AD的中点, APDP。又 PEPF, RtPEARtPFD(HL)。OADODA。 OAOD。 AC2OA2ODBD。ABCD是矩形。 点P是AD的中点,点F是DO的中点, AOPF。 PFBD, ACBD。ABCD是菱形。ABCD是正方形。 BDBC。 BFBD,BC34BC,解得,BC4。【考点】平行四边形的性质,角平分线的性质,三角形中位线定理,全等三角形的判定和性质,正方形的判定和性质,锐角三角函数定义。【分析】(1)连接PO,利用解直角三角形求出EPO=30,再利用“HL”证明PEO和PFO全等,根据全等三角形对应角相等可得FPO=EPO,从而得解。(2)根据条件证出 ABCD是正方形。根据正方形的对角线与边长的关系列式计算即可得解。4. (2012甘肃白银10分)如图,点A,B,C,D在O上,AB=AC,AD与BC相交于点E,延长DB到点F,使,连接AF(1)证明:BDEFDA;(2)试判断直线AF与O的位置关系,并给出证明【答案】解:(1)证明:在BDE和FDA中,FBBD,AEED,。又BDEFDA,BDEFDA。(2)直线AF与O相切。证明如下:连接OA,OB,OC,ABAC,BOCO,OAOA,OABOAC(SSS)。OABOAC。AO是等腰三角形ABC顶角BAC的平分线。AOBC。BDEFDA,得EBDAFD,BEFA。AOBE,AOFA。直线AF与O相切。【考点】相似三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,平行的判定和性质,切线的判定。【分析】(1)因为BDE公共,夹此角的两边BD:DF=ED:AD=2:3,由相似三角形的判定,可知BDEFDA。(2)连接OA、OB、OC,证明OABOAC,得出AOBC再由BDEFDA,得出EBD=AFD,则BEFA,从而AOFA,得出直线AF与O相切。5. (2012广东广州14分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CEAB于E,设ABC=(6090)(1)当=60时,求CE的长;(2)当6090时,是否存在正整数k,使得EFD=kAEF?若存在,求出k的值;若不存在,请说明理由连接CF,当CE2CF2取最大值时,求tanDCF的值【答案】解:(1)=60,BC=10,sin=,即sin60=,解得CE=。(2)存在k=3,使得EFD=kAEF。理由如下:连接CF并延长交BA的延长线于点G,F为AD的中点,AF=FD。在平行四边形ABCD中,ABCD,G=DCF。在AFG和CFD中,G=DCF, G=DCF,AF=FD,AFGCFD(AAS)。CF=GF,AG=CD。CEAB,EF=GF。AEF=G。AB=5,BC=10,点F是AD的中点,AG=5,AF=AD=BC=5。AG=AF。AFG=G。在AFG中,EFC=AEF+G=2AEF,又CFD=AFG,CFD=AEF。EFD=EFC+CFD=2AEF+AEF=3AEF,因此,存在正整数k=3,使得EFD=3AEF。设BE=x,AG=CD=AB=5,EG=AE+AG=5x+5=10x,在RtBCE中,CE2=BC2BE2=100x2。在RtCEG中,CG2=EG2+CE2=(10x)2+100x2=20020x。CF=GF(中已证),CF2=(CG)2=CG2=(20020x)=505x。CE2CF2=100x250+5x=x2+5x+50=(x)2+50+。当x=,即点E是AB的中点时,CE2CF2取最大值。此时,EG=10x=10,CE=,。【考点】锐角三角函数定义,特殊角的三角函数值,平行四边形的性质,对顶角的性质,全等三角形的判定和性质,直角三角形斜边上的中线性质,等腰三角形的性质,二次函数的最值,勾股定理。【分析】(1)利用60角的正弦值列式计算即可得解。(2)连接CF并延长交BA的延长线于点G,利用“角边角”证明AFG和CFD全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得AEF=G=AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得EFC=2G,然后推出EFD=3AEF,从而得解。设BE=x,在RtBCE中,利用勾股定理表示出CE2,表示出EG的长度,在RtCEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答。6. (2012广东肇庆10分)如图,在ABC中,AB=AC,以AB为直径的O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:(1)D是BC的中点;(2)BEC ADC;(3)AB CE=2DPAD【答案】证明:(1)AB是O的直径,ADB=90,即ADBC。AB=AC,D是BC的中点。(2)AB是O的直径,AEB=ADB=90,即CEB=CDA=90,C是公共角,BECADC。(3)BECADC,CBE=CAD。AB=AC,AD=CD,BAD=CAD。BAD=CBE。ADB=BEC=90,ABDBCE。BC=2BD,即。BDP=BEC=90,PBD=CBE,BPDBCE。,即ABCE=2DPAD。【考点】圆周角定理,等腰三角形的性质,相似三角形的判定和性质。【分析】(1)由AB是O的直径,可得ADBC,又由AB=AC,由三线合一,即可证得D是BC的中点。(2)由AB是O的直径,AEB=ADB=90,又由C是公共角,即可证得BECADC。(3)易证得ABDBCE与BPDBCE,根据相似三角形的对应边成比例与BC=2BD,即可证得ABCE=2DPAD。7. (2012贵州毕节14分)如图,AB是O的直径,AC为弦,D是的中点,过点D作EFAC的延长线于E,交AB的延长线于E,交AB的延长线于F。(1)求证:EF是O的切线;(2)若F=,AE=4,求O的半径和AC的长。【答案】(1)证明:连接OD,D是的中点,BOD=A。ODAC。EFAC,E=90。ODF=90。EF是O的切线;(2)解:在AEF中,E=90,sinF= ,AE=4,。设O的半径为R,则OD=OA=OB=R,AB=2R在ODF中,ODF=90,sinF=,OF=3OD=3R。OF+OA=AF,3R+R=12,R=3。连接BC,则ACB=90。E=90,BCEF。AC:AE=AB:AF。AC:4=2R:4R,AC=2。O的半径为3,AC的长为2。【考点】弧、圆周角和圆心角的关系,圆周角定理,平行的判定和性质,切线的判定,锐角三角函数定义,平行线分线段成比例定理。【分析】(1)连接OD,根据圆周角定理,可得BOD=A,则ODAC,从而得出ODF=90,即EF是O的切线。(2)先解直角AEF,由sinF= ,得出AF=3AE=12,再在RtODF中,由sinF=,得出OF=3OD,设O的半径为R,由AF=12列出关于R的方程,解方程即可求出O的半径。连接BC,证明BCEF,根据平行线分线段成比例定理得出AC:AE=AB:AF,即可求出AC的长。8. (2012江苏泰州12分)如图,已知直线l与O相离,OAl于点A,OA=5,OA与O相交于点P,AB与O相切于点B,BP的延长线交直线l于点C(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=,求O的半径和线段PB的长;(3)若在O上存在点Q,使QAC是以AC为底边的等腰三角形,求O的半径r的取值范围【答案】解:(1)AB=AC。理由如下:连接OB。AB切O于B,OAAC,OBA=OAC=90。OBP+ABP=90,ACP+CPB=90。OP=OB,OBP=OPB。OPB=APC,ACP=ABC。AB=AC。(2)延长AP交O于D,连接BD,设圆半径为r,则由OA=5得,OP=OB=r,PA=5r。又PC=, 。由(1)AB=AC得,解得:r=3。AB=AC=4。PD是直径,PBD=90=PAC。DPB=CPA,DPBCPA。,即,解得。 (3)作线段AC的垂直平分线MN,作OEMN,则OE=AC=AB=。又圆O要与直线MN交点,OE=r,r。又圆O与直线l相离,r5。O的半径r的取值范围为r5【考点】切线的性质,三角形内角和定理,等腰三角形的判定和性质,勾股定理,直线与圆的位置关系,相似三角形的判定和性质。【分析】(1)连接OB,根据切线的性质和垂直得出OBA=OAC=90,推出OBP+ABP=90,ACP+CPB=90,求出ACP=ABC,根据等腰三角形的判定推出即可。(2)延长AP交O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5r,根据AB=AC推出,求出r,证DPBCPA,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械运输合同范本简单
- 钢管炉子销售合同范本
- 冷库检修合同范本
- 学校劳务培训合同范本
- 私人承包林地合同范本
- 化学产品购销合同范本
- 装饰售后保养合同范本
- 瓷砖采购简单合同范本
- 消防玩具车安全知识培训课件
- 营销托管服务合同范本
- 2025年甘肃省高考地理试卷真题(含答案解析)
- 2022丹江口财政局事业单位考试真题
- 惠州卫生职业技术学院工作人员招聘考试真题2022
- 高中英语新课标3500个词汇
- 保安服务报价明细表
- 市场监督管理局企业注册、经营范围登记规范表述:行业分类及条目代码
- GA 802-2019道路交通管理机动车类型
- TSG-G0001-2012《锅炉安全技术监察规程》
- 初中数学几何1000题专项训练(含详解分析)-最新
- 《组织行为学》(MBA)课件
- 儿科常见疾病双向转诊指南
评论
0/150
提交评论