




免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年中考数学 三轮冲刺培优练 压轴题集训题 五如图,抛物线y=(x-1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,-3)P为抛物线上一点,横坐标为m,且m0求此抛物线的解析式;当点P位于x轴下方时,求ABP面积的最大值;设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h求h关于m的函数解析式,并写出自变量m的取值范围;当h=9时,直接写出BCP的面积如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k0)经过B,C两点,已知A(1,0),C(0,3),且BC=5(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由如图1,已知抛物线y=x2+bx+c过点A(1,0),B(3,0)(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(CAO+CDO)=4时,求点D的坐标;(3)如图2抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,BMP和EMN的面积分别为m、n,求mn的最大值在RtABC中,A=90,AC=AB=4,D,E分别是AB,AC的中点.若等腰RtADE绕点A逆时针旋转,得到等腰RtAD1E1,设旋转角为(0180),记直线BD1与CE1的交点为P(1)如图1,当=90时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)(2)如图2,当=135时,求证:BD1= CE1,且BD1CE1;(3)设BC的中点为M,则线段PM的长为 ;点P到AB所在直线的距离的最大值为 (直接填写结果) 如图,在平面直角坐标系中,O为坐标系原点,抛物线y=ax2+2ax+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(I)求抛物线的解析式;(II)点P是第二象限抛物线上的一个动点,连接EP,过点E做EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F做FMx轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(III)在(II)的条件下,过点E做EHED交MF 的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.如图,已知A(2,0),B(4,0),抛物线y=ax2+bx1过A、B两点,并与过A点的直线y=0.5x1交于点C(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N问:是否存在这样的点N,使以点M、N、C为顶点的三角形与AOC相似,若存在,求出点N的坐标,若不存在,请说明理由已知在平面直角坐标系中,抛物线y=-0.25x2+bx+3交x轴于A、B两点,交y轴于点C,且对称轴为x=2,点P(0,t)是y轴上的一个动点(1)求抛物线的解析式及顶点D的坐标(2)如图1,当0t4时,设PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值(3)如图2,当点P运动到使PDA=90时,RtADP与RtAOC是否相似?若相似,求出点P的坐标;若不相似,说明理由 如图,已知抛物线y=ax2+bx+c(a0)的顶点为M(1,9),经过抛物线上的两点A(3,7)和B(3,m)的直线交抛物线的对称轴于点C(1)求抛物线的解析式和直线AB的解析式(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得SDAC=2SDCM?若存在,求出点D的坐标;若不存在,请说明理由(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标如图,抛物线y=ax2+bx+c(a,b,c为常数,a0)经过点A(1,0),B(5,6),C(6,0)(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)直接写出点A坐标,并求出该抛物线的解析式(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动当t为何值时,PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点B开始向点A以2个单位/秒的速度运动,过点P作PFAB,交AC于点F,过点F作FGAD于点G,交抛物线于点Q,连接AQ,CQ当t为何值时,ACQ的面积最大?最大值是多少? 如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分别是方程x2-2x-3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连结OD、BD. 当OPC为等腰三角形时,求点P的坐标; 求BOD 面积的最大值,并写出此时点D的坐标. 如图,在平面直角坐标系中,A,B两点的坐标分别是(0,4),(0,4) 点P(p,0)是x轴上一个动点,过点B作直线BCAP于点D,过点P作PQy轴,交BC于点Q 当p0时,直线BC与x轴交于点C(1)当p=2时,求点C的坐标及直线BC的解析式;(2)点P在x轴上运动时,点Q运动的路线是一条抛物线y=ax2+c,请选取适当的点Q,求出抛物线的解析式;(3)是否存在点P,使OPD为等腰三角形?若存在,请求出点P横坐标p的值;若不存在,请说明理由在(2)的条件下,如果抛物线交x轴于E,F两点(点E在点F左侧),过抛物线的顶点和点E作直线l,设点M(m,n)为l上一个动点 请直接写出m在什么范围内取值时,EMF钝角三角形如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得PEA和AOC相似的点P的坐标;(3)作PFBC,垂足为F,当直线l运动时,求RtPFD面积的最大值如图,在平面直角坐标系中,二次函数y=-0.25x2+bx+c的图像与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(-4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图像上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S。求S的最大值;在点F的运动过程中,当点E落在该二次函数图像上时,请直接写出此时S的值。 如图已知点A (-2,4) 和点B (1,0)都在抛物线y=mx2+2mx+n上(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB的交点为点C,试在x轴上找点D,使得以点B,C,D为顶点的三角形与ABC相似 参考答案解:解:解: 解:(1)A=90,AC=AB=4,D,E分别是边AB,AC的中点,AE=AD=2,等腰RtADE绕点A逆时针旋转,得到等腰RtAD1E1,设旋转角为(0180),当=90时,AE1=2,E1AE=90,BD1=2,E1C=2;故答案为:2,2;(2)证明:当=135时,如图2,RtAD1E是由RtADE绕点A逆时针旋转135得到,AD1=AE1,D1AB=E1AC=135,在D1AB和E1AC中,D1ABE1AC(SAS),BD1=CE1,且D1BA=E1CA,记直线BD1与AC交于点F,BFA=CFP,CPF=FAB=90,BD1CE1;(3)解:CPB=CAB=90,BC的中点为M,PM=BC,PM=2,故答案为:2;如图3,作PGAB,交AB所在直线于点G,D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1=2,故ABP=30,则PB=2+2,故点P到AB所在直线的距离的最大值为:PG=1+故答案为:1+ 解:解:解:解:解:(1)设y=a(x+1)(x6)(a0),把B(5,6)代入:a(5+1)(56)=6,a=1,y=(x+1)(x6)=x25x6;(2)存在,如图1,分别过P、B向x轴作垂线PM和BN,垂足分别为M、N,设P(m,m25m6),四边形PACB的面积为S,则PM=m2+5m+6,AM=m+1,MN=5m,CN=65=1,BN=5,S=SAMP+S梯形PMNB+SBNC=(m2+5m+6)(m+1)+(6m2+5m+6)(5m)+16=3m2+12m+36=3(m2)2+48,当m=2时,S有最大值为48,这时m25m6=22526=12,P(2,12),(3)这样的Q点一共有5个,连接Q3A、Q3B,y=x25x6=(x)2;因为Q3在对称轴上,所以设Q3(,y),Q3AB是等腰三角形,且Q3A=Q3B,由勾股定理得:(+1)2+y2=(5)2+(y+6)2,y=,Q3(,)解:(1) A(1,4),抛物线顶点A(1,4),设抛物线解析式为y=a(x-1)2+4,过C(3,0),a=-1.y=-x2+2x+3(2)依题意得:OC=3,OE=4,在RtOCE中,COE=90,CE=5当QPC=90时,cosQCP=,解得t=.当PQC=90时,cosQCP=,解得t=当t=或t=时,PCQ为直角三角形(3)A(1,4),C(3,0),可求得直线AC的解析式为y=2x6P(1,2t),将y=2t代入y=2x6中,得x=3t,Q点的横坐标为3t;将x=3t代入得y=-t2+2t,Q点的纵坐标为-t2+4t,QF=-t2+2t,SACQ= SAFQ SCFQ=0.5FQAG 0.5FQDG=0.5FQ(AG DG) =0.5FQAD =0.52(-t2+2t)=-(t-1)2+1当t=1时,SACQ最大,最大值为1 解:(1)解方程,得 ,.,A(-1,-1),B(3,-3).抛物线过原点,设抛物线的解析式为. 解得,.抛物线的解析式为 .(2)设直线AB的解析式为. 解得,. 直线AB的解析式为.C点坐标为(0,).直线OB过点O(0,0),B(3,-3),直线OB的解析式为. OPC为等腰三角形,OC=OP或OP=PC或OC=PC.设,(i)当OC=OP时, .解得,(舍去). P(,).(ii)当OP=PC时,点P在线段OC的中垂线上, (,.(iii)当OC=PC时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 众筹策划方案范本
- 儿科护理的题库及答案解析
- 咸宁污水池防腐施工方案
- 重庆恒温游泳池施工方案
- 连云港从业资格考试及答案解析
- 海港码头施工方案设计
- 机械数字化施工方案
- 边坡排水线路施工方案
- 低碳示范村项目汇报材料
- 马承英语八上教学课件
- 农村宅基地自建住房技术指南
- 2024年河北省石家庄市轨道交通有限责任公司招聘笔试参考题库含答案解析
- (高清版)TDT 1066-2021 不动产登记数据库标准
- 《金相基础知识普及》课件
- T-CEA 7024-2024 电梯应急救援处置平台技术规范
- 游戏动漫IP衍生品授权策划书
- 静脉治疗护理技术操作标准(2023版)全文内容解读课件
- (初级)游泳救生员理论考试题库(新版)
- 《论语》十二章 高中语文选择性必修上册
- 各国见面礼仪英文版
- 2023-2024学年广东广州番禺区四年级数学第一学期期末综合测试试题含答案
评论
0/150
提交评论