数学人教版七年级上册正数和负数.docx_第1页
数学人教版七年级上册正数和负数.docx_第2页
数学人教版七年级上册正数和负数.docx_第3页
数学人教版七年级上册正数和负数.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1正数和负数教材分析正数和负数是学生由小学进入初中后上的第一堂数学课。课本开宗明义指出数的产生和发展离不开生活和生产的需要。当我们在生产、生活、科研中遇到数的表示和数的运算的问题时,我们在小学阶段所学的数已经无法满足生产和生活的需要,于是自然地要求进行数的扩充,我们依据互为相反意义的量引入了负数的概念,把数系扩充到了有理数的范围。这是第二次对数的扩充(第一次数的扩充是分实物或做除法时不能整除而引进正分数而把自然数扩充到非负有理数):课本通过生产和生活中的具体的例子,把数系扩充到了有理数。这一过程让学生了解数的扩充的背景,经历数的扩充的形成过程,学生从已有的认知出发,在一串与生产和生活戚戚相关的有关问题中,复习和巩固小学数系扩充的历程,开通了新数系又一次扩充的新理念,形成了良性的小学数学与初中数学的衔接关系,这样做既符合学生在现阶段的认知特点,又为学生的后续学习以及后一阶段进行数系的继续扩充奠定了理论和实践的基础。引入负数后,生产和生活中的一些具体事件能够很好地运用数学来进行描述,说明了引入数学符号的必要性,也为我们日后用字母代替数的代数运算开了先河,它可以使问题的阐述更简明、更深入。教学目标知识与技能使学生了解正数与负数是从实际需要中产生的。过程与方法在经历从具体例子引入负数的过程中,使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量,理解0所表示的意义。情感、态度与价值观在负数概念形成的过程中,培养学生的观察、归纳和概括能力,激发学生学好数学的热情。课型新授课课时一课时教学重点正确认识正数和负数,理解正数、负数、0所表示的量的意义。教学难点负数、数0表示的量的意义。教法分析利用多媒体辅助教学,鲜活的动画效果和图片的展示,直观地引导学生认识互为相反意义的量,从而激发学生学习的积极性,达到突出重点,分散难点的作用。学法分析思考、探究、归纳,小组合作讨论。教学准备多媒体课件 教 学 过 程 设 计问题与情境师生行为设计意图一、复习回顾,过渡衔接同学们已经有了六年学习数学的经验,数对每一位同学来说并不陌生,相信同学们已经认识到数的产生和发展离不开生产和生活的需要。首先让我们来回顾:自然数的产生、分数的产生。产生1,2,3 产生数0 产生12,13,教师引导学生观察图片,试着解释图片意义):我们知道,为了表示物体的个数(如原始社会打猎计数)或事物的顺序,产生了数1,2,3,.;为了表示“没有”(比如猎物分完),引入了数0;有时分配、测量(丈量土地)的结果不是整数,需要用分数(小数)表示. 总之,数是为了满足生产和生活的需要而产生发展起来的.演示课件,展示图片,直观说明数的产生和扩充:(出示图片说明自然数的产生、分数的产生。让学生理解数的符号的产生的好处。数的产生和发展离不开生活和生产的需要。二、自主探索,获取新知1.问题背景展示,获取具有相反意义的量常识在生活、生产、科研中,经常遇到数的表示与运算的问题。章前图(引言)演示课件,展示问题及相应的图片。问题(1)北京冬季里某天的温度为-33,它的确切含义是什么?这一天北京的温差是多少?问题(2)有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0)三个队的净胜球数分别是2,-2,0,如何确定排名顺序?问题(3)2006年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里增长-2.7%代表什么意思?具有相反意义的量的表示鉴于上面的分析讨论,在教师的引导下,让学生试着归纳具有相反意义的量的表示:比如温度的问题,零上与零下(是以零为分界点)是具有相反意义的量,我们规定零上为正,则零下为负;净胜球的例子,进球与失球(对方进球)也是具有相反意义的量,我们规定进球为正,则失球为负一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在其前面写上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在其前面写上一个“-”(读作“负”)来表示(零除外)做一做,信息反馈(演示课件:出示幻灯片)例1 运用相反意义的量的意义,完成下表:意义向东走1.8千米向西走3千米收入14200元支出4745元水位下降50厘米表示+1.8千米+30厘米本题教师要注意解释第一、二两个是同一题,三、四两个是同一题,五、六两个是同一题,因为相反意义的量是相对的,比如我们也可以规定向西,支出,下降为正。例2 请你把下面句子中的量用“+”或“-”的数表示出来(1)一辆公共汽车在一个停车站下去10个乘客(规定公共汽车上来人数为正)(2)甲工厂盈利了10万元,乙工厂亏损了8万元(3)商品价格上涨10%和下降15%.要注意回答问题的完整性,不能回答亏损8万元,价格下降15%师生活动:2.分析观察,认识新数,给出正数与负数的定义本章引言及例1与例2中的用到的数有-3,3,2,-2,0,1.8%,-2.7%,10,-8,10%,-15%(选取部分数),观察这一组数,哪些数的形式与在小学里学过的数有区别?这组数中出现了部分新数,其中一部分数-3,-2,-2.7%,-8,-15%,在前面的实际问题中,它们分别表示零下3摄氏度,净输2球,减少2.7%,亏损8万元,下降15%,另一部分3,2,1.8%,10,10%分别表示零上3摄氏度,净胜2球,增长1.8%,盈利10万元,上涨10%。这两部分数在外形上的区别:比较这组数中的两部分数,发现第一部分数是在已学过的数(0除外)的前面添上“-”。由此我们有正负数的描述性定义:归纳定义:有像3,2,1.8%,8844.3,10%这样大于0的数叫做正数;像-3,-2,-2.7%,-155,-15%这样在正数前面加上负号“-”的数叫负数。注:根据需要,有时也在正数的前面也加上“+”(正)号。一个数前面的“+”“-”好叫做它的符号。 由正负数的概念立刻可知:数0既不是正数,也不是负数。教师演示课件并对问题背景做些说明:例如在净胜球的问题中,先介绍确定足球比赛排名顺序的规定:两队积分不相同,积分高的队排名在前;两队积分相同,净胜球多的队排名在前;两队积分、净胜球都相同,进球多的队排名在前。其次介绍积分计算规则:胜一场得3分,平一场得1分,输一场得0分。由此易知这三个队的积分均为3+0=3。最后介绍净胜球的计算规则:红队胜黄队(4:1)表示红队进4球,失1球或者黄队进1球,失4球,净胜球就是比赛中多进了几个球。这里进球和失球是互为相反意义的量。我们规定:进球用“+”,失球用“-”表示,这样进球数和失球数可分别在进球数和失球数前面添上“+”或“-”来表示。净胜球就是在比赛中进球与失球之和。比如以红队为例,进球为4,失球为2(两场比赛各失一球)记为-2,所以红队净胜球为4+(-2)=2.类似地可算出黄队净胜球-2(进球比失球少2个球,相当于净失球2个,所以记为-2),蓝队净胜球是0.在教师的指导下,学生思考-33、净胜球与排名的顺序、增长-2.7%的意义以及在解决这些问题时必须要对这些新数进行四则运算等问题。通过温度的例子出现新数-3还涉及到有理数的减法;净胜球的例子,也出现了负数,确定净胜球涉及有理数的加法,确定排名顺序涉及有理数的大小的比较;在产量增长率的例子中,运用正负数描述朝指定方向变化的情况等问题,引出用各种符号表示数,让学生试着解释,激发他们的求知欲,同时对问题进行说明,找出它们的共性,揭示问题的实质(具有相反意义的量)。让学生抢答,尽量照顾不同层次的学生,调动全班的积极性。在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。学生独立思考,分组讨论,举手发言,教师根据多名同学的发言归纳总结,同时板书课题:正数和负数。在教师引导下,组织学生进一步理解正负数的概念,可以从正负数的描述性定义入手,在教师阐述0的意义的基础上,让学生对0的意义有一个新的认识。0是正数与负数的一个分界,0是一个确定的温度,海拔0表示海平面的平均高度,0的意义已不仅是表示“没有”通过温度的例子出现新数-3还涉及到有理数的减法;净胜球的例子,也出现了负数,确定净胜球涉及有理数的加法,确定排名顺序涉及有理数的大小的比较;在产量增长率的例子中,运用正负数描述朝指定方向变化的情况等问题,引出用各种符号表示数,让学生试着解释,激发他们的求知欲,同时对问题进行说明,找出它们的共性,揭示问题的实质(具有相反意义的量)。由实例归纳具有相反意义的量的表示方法,培养学生合作交流意识及从特殊到一般认识问题本质的能力。通过师生活动,使学生正确理解具有相反意义的量,并能用数学符号表示具有相反意义的量。由此为引入负数的概念埋下伏笔。在出现若干新数后,让学生合作交流,共同探究,在与小学学过的数对比的基础上,弄清新数的本质特征,采用描述定义正数和负数的意义,有利于学生对概念的理解。对数0的意义讨论,有利于对正数和负数的意义的进一步了解。三、负数概念的应用1.0是正数与分数的分界点。从前面的学习我们知道,把0以外的数分为正数和负数,起源于表示两种相反意义的量。规定一种意义的量为正,则另一种意义的量为负。后来正数和负数在许多方面被广泛地应用。小学使用的地图册里,有中国地形图,其中珠穆朗玛峰与吐鲁番盆地处都标有海拔高度。普通的中国地形图上,也可以找到这些数据。(引导学生弄清珠穆朗玛峰海拔高度8844米与吐鲁番盆地海拔高度-155米的含义)记录收入支出的某地银行存折图片同样记录账目时,用正数表示收入款额,用负数表示支出款额。学生观察图片时,分别解释:记录收入支出图片中的正负数分别表示,存入2300元,支出1800元。2.课堂练习,巩固提高:教科书第3页练习。教师演示课件:幻灯片(出示图片)教师介绍地图上表示某地的高度时,需要已海平面为基准(规定海平面的海拔高度为0)。通常用正数表示高于海平面的某地高度,负数表示低于海平面的某地高度。学生观察地图,解释正负数的含义:A地+4600米表示高出海平面4600米,B地-100米表示低于海平面100米。教师巡视指导,学生自行完成,也可适当交流,然后共同评价,查漏补缺,共同提高。在正负数的应用中,进一步理解正负数意义,它起源于表示两种意义相反的量,正负数的表示具有相对性,与规定的哪一方为正有关。另外应根据学生的实际水平高低进行调整,试着由学生先解释,教师后补充。通过巩固练习,提高学生运用所学知识解决实际问题的能力,同时也进一步体会到正、负数的引入对解决实际问题的优越性。四、课堂小结这节课我们主要学了什么?在我们生活中有哪些例子可以用今天学过的数来表示?教师指导下学生合作交流达成一致:在生产和生活的实例中,出现了具有相反意义的量,而这些量要用数来表示出现了数不够用,引入了负数,进行了数的扩充;了解了负数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论