




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.7正弦定理、余弦定理应用举例1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示.已知条件 应用定理一般解法一边和两角(如a,B,C)正弦定理由ABC180,求角A;由正弦定理求出b与c. 在有解时只有一解两边和夹角(如a,b,C)余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由ABC180求出另一角. 在有解时只有一解三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用ABC180,求出角C. 在有解时只有一解两边和其中一边的对角(如a,b,A)正弦定理余弦定理由正弦定理求出角B;由ABC180,求出角C;再利用正弦定理或余弦定理求c.可有两解,一解或无解2.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.3.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图).(2)方向角:相对于某正方向的水平角,如南偏东30,北偏西45等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为(如图).(4)坡度:坡面与水平面所成的二面角的度数.1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60,C点的俯角是70,则BAC_.2.(2011上海)在相距2千米的A,B两点处测量目标C,若CAB75,CBA60,则A,C两点之间的距离是_千米.3.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45和60,而且两条船与炮台底部连线成30角,则两条船相距_ m.4.如图,某登山队在山脚A处测得山顶B的仰角为45,沿倾斜角为30的斜坡前进1 000 m后到达D处,又测得山顶的仰角为60,则山的高度BC为_ m.5.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的 ()A.北偏东10 B.北偏西10C.南偏东10 D.南偏西10题型一测量距离问题例1(2010陕西)如图,A,B是海面上位于东西方向相距5(3)海里的两个观测点,现位于A点北偏东45,B点北偏西60的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?探究提高这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意:基线的选取要恰当准确;选取的三角形及正、余弦定理要恰当. 要测量对岸A、B两点之间的距离,选取相距 km的C、D两点,并测得ACB75,BCD45,ADC30,ADB45,求A、B之间的距离.题型二测量高度问题例2某人在塔的正东沿着南偏西60的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30,求塔高.探究提高在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,恰当地选取相关的三角形和正、余弦定理逐步进行求解.注意综合应用方程和平面几何、立体几何等知识. 如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角AEB,的最大值为60.(1)求该人沿南偏西60的方向走到仰角最大时,走了几分钟;(2)求塔的高AB.题型三几何中的正、余弦定理应用问题例3如图所示,在梯形ABCD中,ADBC,AB5,AC9,BCA30,ADB45,求BD的长.探究提高要利用正、余弦定理解决问题,需将多边形分割成若干个三角形.在分割时,要注意有利于应用正、余弦定理. 如图所示,ACD是等边三角形,ABC是等腰直角三角形,ACB90,BD交AC于E,AB2.(1)求cosCBE的值;(2)求AE.7.运用正、余弦定理解决实际应用问题试题:(14分)如图,在海岸A处发现北偏东45方向,距A处(1)海里的B处有一艘走私船.在A处北偏西75方向,距A处2海里的C处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.审题视角(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中,如ABC和BCD.(3)利用正弦定理或余弦定理求解.规范解答解设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD10t海里,BD10t海里, 2分在ABC中,由余弦定理,有BC2AB2AC22ABACcos A(1)2222(1)2cos 1206.BC海里. 4分又,sinABC,ABC45,B点在C点的正东方向上,CBD9030120, 8分在BCD中,由正弦定理,得,sinBCD.BCD30,缉私船沿北偏东60的方向行驶. 10分又在BCD中,CBD120,BCD30,D30,BDBC,即10t.t小时15分钟.缉私船应沿北偏东60的方向行驶,才能最快截获走私船,大约需要15分钟.14分解斜三角形应用题的一般步骤为:第一步:分析理解题意,分清已知与未知,画出示意图;第二步:建模根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;第三步:求解利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;第四步:检验检验上述所求的解是否符合实际意义,从而得出实际问题的解.批阅笔记(1)由实际出发,构建数学模型是解应用题的基本思路.如果涉及三角形问题,我们可以把它抽象为解三角形问题,进行解答,之后再还原成实际问题,即利用上述模板答题.(2)本题的易错点是,不能将已知和待求量转化到同一个三角形中,无法运用正、余弦定理求解.方法与技巧1.合理应用仰角、俯角、方位角、方向角等概念建立三角函数模型.2.把生活中的问题化为二维空间解决,即在一个平面上利用三角函数求值.3.合理运用换元法、代入法解决实际问题.失误与防范在解实际问题时,应正确理解如下角的含义.1.方向角从指定方向线到目标方向线的水平角.2.方位角从正北方向线顺时针到目标方向线的水平角.3.坡度坡面与水平面的二面角的度数.4.仰角与俯角与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时称为仰角,目标视线在水平视线下方时称为俯角.4.7正弦定理、余弦定理应用举例(时间:60分钟)A组专项基础训练题组一、选择题1.如果在测量中,某渠道斜坡的坡度为,设为坡角,那么cos 等于 ()A. B. C. D.2.有一长为1的斜坡,它的倾斜角为20,现高不变,将倾斜角改为10,则斜坡长为()A.1 B.2sin 10C.2cos 10 D.cos 203.如图,设A、B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,ACB45,CAB105后,就可以计算出A、B两点的距离为 ()A.50 m B.50 mC.25 m D. m二、填空题4.如图,某住宅小区的平面图呈圆心角为120的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿着DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为_米.5.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60方向,行驶4 h后,船到B处,看到这个灯塔在北偏东15方向,这时船与灯塔的距离为_ km.6.如图,在四边形ABCD中,已知ADCD,AD10,AB14,BDA60,BCD135,则BC的长为_.三、解答题7.(2010陕西)如图,在ABC中,已知B45,D是BC边上的一点,AD10,AC14,DC6,求AB的长.8.如图,甲船以每小时30海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120方向的B2处,此时两船相距10海里.问:乙船每小时航行多少海里?B组专项能力提升题组一、选择题1.在ABC中,已知A45,AB,BC2,则C等于 ()A.30 B.60C.120 D.30或1502.某人向正东方向走x km后,向右转150,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x的值为 ()A. B.2C.或2 D.33.如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30、相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则cos 等于()A. B.C. D.二、填空题4.(2011安徽)已知ABC的一个内角为120,并且三边长构成公差为4的等差数列,则ABC的面积为_.5.(2011课标全国)在ABC中,B60,AC,则AB2BC的最大值为_.6.在ABC中,D为边BC上一点,BDDC,ADB120,AD2.若ADC的面积为3,则BAC_.三、解答题7.如图所示,海中小岛A周围38海里内有暗礁,船向正南航行,在B处测得小岛A在船的南偏东30方向,航行30海里后,在C处测得小岛A在船的南偏东45方向,如果此船不改变航向,继续向南航行,有无触礁的危险?8.如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75、30,于水面C处测得B点和D点的仰角均为60,AC0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01 km,1.414,2.449).答案基础自测1.1302.3.104.500(1)5.B题型分类深度剖析例1解由题意知AB5(3)海里,DBA906030,DAB904545,ADB180(4530)105.在ABD中,由正弦定理,得,DB10(海里).又DBCDBAABC30(9060)60,BC20(海里),在DBC中,由余弦定理,得CD2BD2BC22BDBCcos DBC3001 20021020900,CD30(海里),需要的时间t1(小时).故救援船到达D点需要1小时.变式训练1A、B之间的距离为 km例2解如图所示,某人在C处,AB为塔高,他沿CD前进,CD40,此时DBF45,过点B作BECD于E,则AEB30,在BCD中,CD40,BCD30,DBC135,由正弦定理,得,BD20.BDE1801353015.在RtBED中,BEDBsin 152010(1).在RtABE中,AEB30,ABBEtan 30(3)(米).故所求的塔高为(3)米.变式训练2解(1)依题意知,在DBC中,BCD30,DBC18045135,CD6 000100(米),D1801353015,由正弦定理得,BC50(1)(米).在RtABE中,tan .AB为定长,当BE的长最小时,取最大值60,这时BECD.当BECD时,在RtBEC中,ECBCcosBCE50(1)25(3)(米).设该人沿南偏西60的方向走到仰角最大时,走了t分钟.则t6060(分钟).(2)由(1)知当取得最大值60时,BECD,在RtBEC中,BEBCsinBCD,ABBEtan 60BCsinBCDtan 6050(1)25(3)(米).即所求塔高AB为25(3)米.例3解在ABC中,AB5,AC9,BCA30.由正弦定理,得,sinABC.ADBC,BAD180ABC,于是sinBADsinABC.同理,在ABD中,AB5,sinBAD,ADB45,由正弦定理:,解得BD.故BD的长为.变式训练3(1)(2)课时规范训练A组1.B2.C3.A4.505.306.87.解在ADC中,AD10,AC14,DC6,由余弦定理得cosADC,ADC120,ADB60.在ABD中,AD10,B45,ADB60,由正弦定理得,AB5.8.解如图所示,连接A1B2,由已知A2B210,A1A23010,A1A2A2B2.又A1A2B218012060,A1A2B2是等边三角形,A1B2A1A210.由已知,A1B120,B1A1B21056045,在A1B2B1中,由余弦定理得B1BA1BA1B2A1B1A1B2cos 45202(10)222010200,B1B210.因此,乙船的速度为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工动静脉内瘘术后护理
- 护理专业重点简答题题库及答案解析
- 消防灭火方案编制范本
- 危化企业安全知识问答题库及答案解析
- 肾癌根治术后患者的护理
- 催产素引产的护理查房
- 生字口目耳手教学课件
- 水电站项目施工问题分析与应对方案
- 公路设计技术交底
- 临床医学导论课程解析
- 新汉语水平考试HSK级写作解题攻略专题培训课件
- 学习提高阅读速度的方法 课件
- 第一单元知识盘点(含字词、佳句、感知、考点) 四年级语文上册 (部编版有答案)
- 钻井工程钻柱课件
- 小学硬笔书法课教案(1-30节)
- 卫生政策学之政策问题根源分析
- 周口市医疗保障门诊特定药品保险申请表
- 校园物业考评表
- 重大医疗事件报告及处理制度
- 爆破作业人员培训考核题库
- 构造地质学03章-地质构造分析的力学基础
评论
0/150
提交评论