




已阅读5页,还剩99页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
APOOverviewInternalTrainingDemandPlanningOverview March2003 TrainingAgenda AdvancedPlanner OptimizerOverviewDemandPlanningOverviewSupplyNetworkPlanningOverviewProductionPlanning DetailedSchedulingOverviewGlobalAvailable to PromiseOverviewAPOIntegration CIFOverviewAPOImplementationConsiderations Objectives MainGoalsofThisSectionTounderstandDemandPlanningasanaccurateforecastingtoolintheAPOcontext ToknowDemandPlanningmainfeatures inconcrete Itsarchitecture datastorageandrepresentationattributesItsmaintools PlanningToolbox PlanningEnvironment AccuracyAnalysis ThedifferentforecastingmethodsavailableTovisualizehowDPappliestoarealcase SaraLee TobeawareofmainconsiderationsandcomplexityfactorswhenimplementingDemandPlanning TogetfamiliarwiththelookofDPanditsbasicfunctionsthroughademoandpractisingwithsimpleexercises Contents DemandPlanningFeatures CapabilitiesCaseStudy SaraLeeKeyAspectstoConsiderWhenImplementingDPDPDemo AcceleratedSupplyChainIntegrationAPOTemplateDPExercises DemandPlanning AccurateForecastingAtoolkitofstatisticalforecastingtechniquesTightlylinkedtotheR 3SystemandtheSAPBWSAP datacanbeautomaticallytransferred Treeselectionanddrill downcapabilitiesfacilitatesnavigationthroughmultidimensionaldatastructuresUsestheAlertMonitortoreportexceptions DemandPlanningFeaturesandCapabilities Planner sKnowledgeTask specificplanningtoolsFlexibleviewsGraphicsPromotionalplanningLifecyclemanagementCannibalizationAccuracyreporting StatisticalMethodsMulti modelapproachAveragemodelsExponentialsmoothingCausalfactorsTrenddampeningModelcombinationPickbest DemandPlanningDataMart AnticipationofFutureDemand InformationCollaborativeforecastsOrder shipmentactuals historyCostPOSdataNielsen IRIdata DemandPlanningFeaturesandCapabilities CUSTOMER YEARS MONTHS WEEKS DAYS HOURS QUARTERS SELL HOLD MOVE MAKE DESIGN B2BExchanges ContractManufacturers 3PLs 4PLs ChannelPartnersB2BExchanges BUY SUPPLIER ProductionActivityControl OrderManagement Procurement ManufacturingExecutionSystem LoadPlanning TransportPlanning DistributionRequirementsPlanning MaterialsPlanning ProductionPlanning SupplyDemandMatching ProductAllocation SalesForecasting InventoryTargetSetting SupplyContractNegotiations NetworkSourcing CustomerServiceTerritoryPlanning AvailabletoPromise In transit On handInventoryTracking MaterialInventoryTracking NewProductDevelopment LogisticsNetworkDesign DetailedProductionScheduling MaterialRequirementsPlanning APODemandPlanningwithinSupplyChainPlanning DemandPlanningAPO DP SAPAPODemandPlanningArchitectureDemandPlanningiscomposedofthreelayers GraphicaluserinterfacePlanningandanalysisengineDatamart DemandPlanningFeaturesandCapabilities SAPAPODemandPlanningArchitecture continued PerformanceisofvitalimportanceinanydemandplanningsolutionifusersaretofullybenefitfromavailableinformationDParchitectureincludesseveralfeaturestoensurehighperformance DedicatedserverMultidimensionaldatamartbasedonthestarschemathatsupportsefficientuseofstoragespaceandofCPUcycles minimizingqueryresponsetimeBatchforecastingsodonotimpedeonlineperformanceThesizeoftheinformationtreateddependson Numberofcharacteristics manycharacteristicswilllettheusermoreflexibilitytodefinetheplanninglevelandtoreviewtheinformationbutitmakesthesystemworksslowerNumberofkeyfigures manykeyfigureswillgivetheuseralotofinformationrelatedtoforecastbutitmakesthesystemworksslowerNumberofcharacteristiccombinations thetimeconsumingforanycalculation e g macros dependsdirectlyonthenumberofcharacteristiccombinationsNumberofplanningversions twoplanningversionsneedsdoublecapacitythanoneTypeandnumberoftemporalperiods DemandPlanningFeaturesandCapabilities DemandPlanningFeaturesandCapabilities DataStorageandRepresentationMultidimensionalDataStorageinthedatamartallowsto ViewdataandplanfrommanydifferentperspectivesDrilldownfromoneleveltothenextInfoCubes AmultidimensionaldatastructureTheprimarycontainerofdatausedinplanning analysisandreportingContainstwotypesofdata keyfiguresandcharacteristics ordimensions Keyfiguresarequantifiablevalues e g salesinunits orders shipments POS Characteristicsordimensionsdeterminetheorganizationallevelsatwhichyoudoaggregationandreporting e g productsandcustomers InfoCubesalsosharemasterdataanddescriptivetext whicharestoredindifferenttablesTheOnlineAnalyticalProcessingprocessor Modelsthebusinessrulesconsideringtheaggregationalbehaviorofkeyfigures e g salessummedbyproductandtime Guaranteesthatallbusinessrulesaremetandthecomputedviewspresentvalidresults DataStorageandRepresentation continued Hierarchiesaremodeledascombinationsofcharacteristicvalues e g productaregroupedintoproductfamilyhierarchies usingproportionalandtemporalfactors inordertobeusedasthebasisforaggregation disaggregationanddrillingdown TheDPplanninglevelisbasedonthecharacteristicsdefinition InordertobemoreintegratedwithR 3data thedimensionsandcharacteristicsareusuallybasedonR 3hierarchies ProductdimensionandcharacteristicsareusuallybasedonR 3producthierarchyCustomerdimensionandcharacteristicsareusuallybasedonaR 3customerhierarchyGeographicdimensionandcharacteristicsareusuallybasedonthesupplynetwork DemandPlanningFeaturesandCapabilities DataStorageandRepresentation continued TimeSeriesManagement Basedoncatalogs timeseriesdatawithrelatedattributes e g promotionalpatternsandlifecycles SAPDPallowstoreusetimeseriessavingtimeandensuringconsistency e g reuseapastpromotionalpatterntoestimatetheimpactofasimilarfuturepromotion NotesManagementmaintainsallnotesenteredbyplannerstocreateanaudittrailofalldemandplanningactivities whichisspeciallyhelpfulwhenmultiplesourcesandpeopleareinvolved suchasinconsensusforecasting DemandPlanningFeaturesandCapabilities PlanningEnvironmentDP srichplanningandforecastingfunctionsarebasedontheStatisticalForecastingToolboxandtheBusinessPlanningLibrary Thesefunctionsinclude Aggregatefunctions sum weightedsum average Disaggregatefunctions quotas proportionalandequaldistribution Comparisonfunctions difference ratio percent percentdifference shareandcorrelation Financialfunctions conversionfromunitsintorevenue currencyconversionandbusinessperiodconversion Time seriesfunctions time phased average andweightedaverageoftimeseries APlanningBookisaneasy to usetreecontrolforselectingdataandaframewithagridandagraphicaldatadisplay Preconfiguredplanningbooksforpromotionalplanning causalanalysis statisticalforecasting lifecyclemanagement etcThesecanbeusedasguidesforcustomizedplanningbooks DemandPlanningFeaturesandCapabilities PlanningEnvironment continued YoucanuseAdvancedMacrosto CalculatedeviationsMakeautomaticcorrectionsCalculatesalesbudgetsDefineyourownexceptionalsituationsLaunchstatusqueriesAdvancedMacrosmodelsthecalculationsbasedontheindividualbusinesstaskstoperformprincipally BuildamacroconsistingofoneormorestepsControlhowmacrostepsareprocessedandhowresultsarecalculatedUseawiderangeoffunctionsandoperationsDefineoffsetssothattheresultinoneperiodisdeterminedbyavalueinthepreviousperiodRestricttheexecutionofamacrotoaspecificperiodorperiodsWritemacroresultstoarow acolumnoracellCreatecontext specificanduser specificplanningviewsTriggeranalertintheAlertMonitortoinformofparticularbusinesssituationsIntegrationwithMicrosoftExcel DemandPlanningFeaturesandCapabilities StatisticalForecastingToolboxAToolboxofallpractical provenforecastingmethodsTimeSeriesModels Usespastsalestoidentifylevel trend andseasonalpatternsasabasisforcreatingfutureprojectionsNa vemodels movingaverage simplelinearregression Brown sexponentialsmoothing Holt Winters Box JenkinsStochasticModels AccurateforecastwithsporadicdemandpatternCrostonmodelusesexponentialsmoothingtoestimate ThesizeofdemandduringperiodsinwhichdemandoccurThedemandfrequencyFinalforecastaredeterminedbydistributingthesizeofdemandaccordingtothedemandfrequency DemandPlanningFeaturesandCapabilities StatisticalForecastingToolbox continued MultipleLinearRegression TechniqueforestimatingtherelationshipbetweenpastsalesandothercausalfactorsVarietyofoptionstomodellinearandnon lineartrends SeasonalpatternsLifecyclepatternsDummyvariablesandtimelagsCorrelationanalysiscorrectsvariablesPick the Best appliesthebestmethodamong Alloftheavailableforecastingmethods orTheplanner specifiedforecastingmethodsS ShapedCurvessupportscompletelifecycleforecasting introduction growthandend of lifephases LogisticandexponentialfunctionsFirstestimationbasedonsimilarproductsAdjustedovertimewhensaleshistoryisavailable DemandPlanningFeaturesandCapabilities CausalAnalysisIncludesallsignificantcausalfactors price numberofdisplays numberofstores temperature workingdays inthemodelsanddeterminehowtheyaffectcustomers behaviorSimulatesalesdevelopmentaccordingtothemixofcausalfactors what ifanalysis marketingmixplanning Multiplelinearregressiontomodeltheimpactofcausalfactors DemandPlanningFeaturesandCapabilities Multi TierForecastingIntegratessell indata likePOSdata intotheprocessofforecastingsell throughdata likeshipments CausalmodelbasedonsignificantcausalfactorstoforecastPOSSecondcausalmodelisusedtoforecastshipments UsespastPOSdataandthePOSforecastasthemaincausalfactorTakesthetimelagbetweenPOSandshipmentsintoaccountConsidersothercausalfactors forwardbuys tradepromotions POSData Manufacturing Retailer SalesHistory Consumer Promotion Advertisement time Consumerdemand Replenishmentleadtime Forwardbuying RetailerDemand DemandPlanningFeaturesandCapabilities DataAnalysisIdentifiesmissingvaluesandoutliersinthedatatoimprovethequalityofthestatisticalforecast Throughtheoutlier anautomaticcorrectionofhistoricaldataisdonetakingintoconsiderationout of rangedatathatmaydisturbtheidentificationofhistoricalpatternIdentifiesstructuralchangesin established patterns Level trend andamplitudechangesChangefromunstabletostablebehaviorAutomaticdetectionviatrackingsignalsAutomaticoutlierdetection correctionManualintervention DemandPlanningFeaturesandCapabilities PromotionPlanningImpactofpromotionsmustbeprojectedseparatelyfromstandardforecastcomponentsthatarebasedonhistoricalsalesdataTakespricesintoaccountwhendoingprofitabilityanalysisforpromotionalcalendarsReportingcapabilitiesallowtotrackpromotionalactivitiesandrelatedcostsArchivesapromotionpatterninapromotioncatalog soitcanbereusedSeveraltechniquesforestimatingtheeffectofapromotion Promotion Planner DemandPlanningFeaturesandCapabilities LifeCycle ManagementADemandPlanningandSupplyNetworkPlanningbothcomponents functionPlanningstrategiesforaproductdependonthestageofitslifecycle Shouldtheproductbeintroduced andwhen Howshouldaproductbepromotedduringthedifferentstages Shouldtheproductbedeleted andwhen Shouldasuccessorproductbeintroduced Shouldare launchbestartedforaproduct andwhen Whatisthecannibalizationeffectofanewproductwithexistingproducts Etc DPcanrepresentthelaunch growthanddiscontinuationphasesbyusingphase in phase outandlikemodelingprofiles orcombiningthem Aphase inprofilereducesdemandhistorybyeverincreasingpercentagesduringaspecificperiodorperiods simulatingupwardsalescurve launchandgrowthphases Aphase outprofilereducesdemandforecastofaproductbyeverdecreasingpercentages simulatingdownwardsalescurve discontinuationphase Likemodelingcreatesaforecastusingthehistoricaldataonaproductwithasimilardemandbehavior newproductsandproductswithshortlifecycles ProductLaunch Aggregate EndofLife DemandPlanningFeaturesandCapabilities Consensus BasedForecastingSAPDPsupportsconsensus basedSales OperationsPlanning S OP MultidimensionaldatastructureoftheInfoCubesenablestocreatemultipleplans ProductlevelsforMarketingSalesareasandaccount channelforSalesDistributioncentersandplantsforOperationsBusinessunitsforFinanceSynchronizesmultipleplansintooneConsensusPlanthatdrivesbusinessCompositeForecastingreconcilesandcombinesdifferentplansonsamelevelandmulti levels DemandPlanningFeaturesandCapabilities Forecast 1n Combine Reconcile SalesForecast MarketingForecast ForecastAccuracyAnalysis AlertMonitorForecastaccuracyreporting HelpstoassesstheaccuracyofpastforecastsIntegratesthisknowledgeintoprojectionsforthefutureStoresaseriesofforecastsforaparticularperiodandcompareseachdeviationofthisseriestotheactualvaluesforthesameperiod meanabsolutedeviation errortotal meanpercentageerror Reportsshoeforecasterrorsatanylevelanddimension ActualversusforecastActualversustime laggedforecastActualversusdifferentplanningversionsActualversusbudgetAlertMonitorinformsinrealtimeviae mailorexceptionmessageifanexceptionoccursExceptionconditionscanbedefinedbasedonthresholdsforspecialstatisticsandtrackingsignalsReportscanbesorted ByforecasterrorRestrictthemtoproductswithaforecasterrorgreaterthanaspecifiedthreshold DemandPlanningFeaturesandCapabilities AdvantagesofSAPAPODemandPlanningGlobalserverwithaBWinfrastructureIntegratedexceptionhandling creationofuserdefinedalertsIntegrationwithProductionPlanning S OPscenario MainmemorybasedplanningFlexiblenavigationintheplanningtable variabledrilldownExtensiveforecastingtechniquePromotionplanningandevaluationCollaborativeplanningviatheinternetSupportsSalesBillsofMaterial BOMs DemandPlanningFeaturesandCapabilities Contents DemandPlanningFeatures CapabilitiesCaseStudy SaraLeeKeyAspectstoConsiderWhenImplementingDPDPDemo AcceleratedSupplyChainIntegrationAPOTemplateDPExercises CaseStudy SaraLee IntroductionMainobjectivesofDemandPlanningforSaraLee S OPpurposes ProvidetheessentialinputforS OPmonthlycycle forecast andcreateconsensuswithintheOpCo DemandForecastshouldcontaintherequireddetailinordertocomparewithBusiness SalestargetsSupplyPlanningpurposes ProvideupdatedforecastfromdifferentOpCo s inweeklybuckets toSupplyPlanninginordertobaseSupplyPlanningonconsolidatedforecastfromeachOpCoBenefitsofDemandPlanningforSaraLee ImprovethecommunicationandtransparencyfromallOpCo stoCoEProvidetoSupplyPlanningshortandlongtermvolumeestimationforcapacityplanningCreateconsensusintheOpCo togetherwithS OP UnderstandingthedemandofeachOpCothroughdeepanalysis KPIs marketintelligence Movefrom Reactionon toward PlanActivities ImprovedcustomerservicelevelLowerobsoleteandsafetystocks CaseStudy SaraLee ProjectApproachAtemplatehasbeendevelopedinordertoalign coverandsupportalltheprocessesperformedintheSaraLeeOpcosinEurope Indifferentphases theOpcoswillstarttousethenewtemplate changingtheiractualproceduresand orsystems localroll outs Therewillbeacentralteamresponsibleofmaintainingthebasicandcommonapplications Ineveryroll outalocalteamwillbeassignedtocheckthattherequirementsoftheOpcoarecovered toconductthetrainings etc Communicationbetweenlocalandcentralteams Eitherinthecentralandinthelocalteams therewillbeamemberresponsibleofthecommunicationbetweenthem Thecommunicationlinkwillbeone to one CUSTOMIZING Thelocalteamwillaskthecentralforcustomizingnewstructures Everylocalroll outwillhaveadifferentcopyofthe ImplementationGuidelines GAPS Thelocalteamwilldetectfunctionalitynotcoveredbythetemplate then thesegapsmustbewrittendowninadocumentcalled EuRoPefit Bothteamswillhaveameetingtodeterminehoweachissueinthe EuRoPefit mustbesolved Initialtraining centraltolocal EuRoPefitsessions local EuRoPefitanalysis central local GAPestimation central GAPsapproval projectmanagement CentralGAPsdesign Templatedevelopment central LocalGAPsdesign local CaseStudy SaraLee ProjectApproach continued Procedureforthe EuRoPefit AnalysisandDevelopment CaseStudy SaraLee DemandPlanningProcessesDemandPlanningProcessesaredividedintothreecycles AOP Outlookgeneration ProvidevolumestakenfromAPODPasastartingpointfortheAOP OutlookgenerationMonthlycycle UpdateDemandForecastforthefollowing24fiscalperiodsandprovideittotheSalesandOperationsPlanningmonthlycycle tocreateaconsensusandrunSupplyPlanning Weeklycycle Reviewcurrentmonthforecasttoidentifysupplyrisks adviseSalesandMarketingoftheserisksandchangetheforecastwhichappliestoaperiodoutsideoftheSupplyPlanningfrozenperiod Tactical Operational MonthlyCycle WeeklyCycle Strategic AOPgeneration CaseStudy SaraLee DemandPlanningProcesses continued AOP Outlookgeneration APOForecastvolumecanbeusedasastartingpointforAOPgeneration VolumesaresenttoR 3whereitisconvertedintovalue Volume valueadjustmentsaredoneinR 3AOPvolumeissentbacktoAPOforSupplyPlanningpurposesandKPIanalysis CO PA R 3 APO CO PA R 3 APO VolumesfromAPODP Convertvolumetovalue AdjustVolume RunSNPwithAdjustedvolume VolumeadjustedafterSNP Convertvolumetovalue AdjustVolume FinalAOPvolumesenttoAPO InterfaceSAP APO SendAdjustedVolumetoAPO DemandPlanning Finance SupplyPlanning Finance Responsible Process CaseStudy SaraLee DemandPlanningProcesses continued MonthlyCycle DemandPlanningcanbeconsideredasasub processoftheSalesandOperationsPlanning CaseStudy SaraLee DemandPlanningProcesses continued MonthlyCycle RollingforecastformonthMtoM 24ispreparedbyDemandPlanners InsecondlastweekofmonthM 1 BasedonthehistoryaccumulateduntilmonthM 2 CaseStudy SaraLee DemandPlanningProcesses continued MonthlyCycle Demandplannerswillprovideeverymontharollingforecastforthefollowing24fiscalperiods Therewillbesomedifferencesbetweenthefirst6monthsandtheremaining12months First6months Presentedinweeksifneeded inAPODPnotmuchextraworkisneeded Forecastbasedoncleanhistory promotionsLast18months S OPrequirementforlongtermcapacitychecking PresentedinmonthsForecastasextrapolationofnon cleanedhistory CaseStudy SaraLee DemandPlanningProcesses continued WeeklyProcess Processmodeloverview Theprocessconsistsofreviewingtheconsumptionoftheforecastwithinthecurrentmonth facilitatingdecisionmakingoncriticalexceptions e g potentialstockstorage Thiswillbemadebyexceptionbasedonthefollowingsources Consumptionofforecastaftertheweeklyupload Monday Tuesday Dailystock outreportcomingfromR 3OrdertoCash CDP willdevelopATPbasedon Physicalstock Incomingstock Promised reserved stock CaseStudy SaraLee DataStructureSCPdatastructurearebasedonCDPhierarchies HierarchiesdefinedtakingintoaccounttheglobalEuRoPesolutionEasytointegratewithCDPCDPisresponsiblefordefiningthecontentofeachofthelevelofthehierarchiesPlanninglevelsaregroupedindimensions Dimensionsdonothaveanyfunctionalimpact anditisonlyawayoforganisingtheinformationinthesystem IntheSCPEuRoPeSolutionitisplannedtouse3dimensions ProductCustomerandDemandorgan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025徽商银行宣城分行社会招聘模拟试卷含答案详解
- 遂宁招聘中小学教师考试真题2024
- 2025昆明市晋宁区文化和旅游局招聘编外工作人员(1人)考前自测高频考点模拟试题及答案详解(夺冠)
- 2025湖北随州市招募选派三支一扶高校毕业生80人考前自测高频考点模拟试题及完整答案详解
- 2025年甘肃省兰州大学物理科学与技术学院诚聘英才考前自测高频考点模拟试题及一套参考答案详解
- 2025国家基础地理中心招聘工作人员(北京)模拟试卷及参考答案详解
- 2025江西吉水县某行政单位招聘4人模拟试卷完整参考答案详解
- 2025河南中医药大学人事代理工作人员招聘13人考前自测高频考点模拟试题及答案详解参考
- 2025福建厦门市集美区蔡林学校英语产假顶岗教师招聘1人考前自测高频考点模拟试题有完整答案详解
- 2025年中国海峡人才市场将乐工作部见习生招聘2人模拟试卷(含答案详解)
- 宁夏易制毒管理办法
- 教学课件文案模板范文
- 要素式强制执行申请书(申请执行用)
- 辽宁省民间信仰管理办法
- 财务信息化系统建设-洞察阐释
- 学堂在线 新闻摄影 期末考试答案
- 脑瘫个案护理
- 2025年营养土项目可行性研究报告
- 2025至2030年中国乙肝疫苗行业市场发展模式及未来前景分析报告
- 作文写作(解析版)-2025年中考语文一模试题分类汇编(贵州专用)
- 人工智能技术研发股东出资合作框架协议
评论
0/150
提交评论