




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MATLAB作业三参考答案1、 请将下面给出的矩阵A和B输入到MATLAB环境中,并将它们转换成符号矩阵。若某一矩阵为数值矩阵,另以矩阵为符号矩阵,两矩阵相乘是符号矩阵还是数值矩阵。【求解】矩阵的输入与转换是很直接的。 A=5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7; A=sym(A)A = 5, 7, 6, 5, 1, 6, 5 2, 3, 1, 0, 0, 1, 4 6, 4, 2, 0, 6, 4, 4 3, 9, 6, 3, 6, 6, 2 10, 7, 6, 0, 0, 7, 7 7, 2, 4, 4, 0, 7, 7 4, 8, 6, 7, 2, 1, 7 B=3,5,5,0,1,2,3; 3,2,5,4,6,2,5; 1,2,1,1,3,4,6; 3,5,1,5,2,1,2;4,1,0,1,2,0,1; -3,-4,-7,3,7,8,12; 1,-10,7,-6,8,1,5; B=sym(B)B = 3, 5, 5, 0, 1, 2, 3 3, 2, 5, 4, 6, 2, 5 1, 2, 1, 1, 3, 4, 6 3, 5, 1, 5, 2, 1, 2 4, 1, 0, 1, 2, 0, 1 -3, -4, -7, 3, 7, 8, 12 1, -10, 7, -6, 8, 1, 52、 利用MATLAB语言提供的现成函数对习题1中给出的两个矩阵进行分析,判定它们是否为奇异矩阵,得出矩阵的秩、行列式、迹和逆矩阵,检验得出的逆矩阵是否正确。【求解】以A 矩阵为例,可以对其进行如下分析。 A=5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7; A=sym(A);rank(A)ans =7 det(A)ans =-35432 trace(A)ans =27 B=inv(A); A*Bans = 1, 0, 0, 0, 0, 0, 0 0, 1, 0, 0, 0, 0, 0 0, 0, 1, 0, 0, 0, 0 0, 0, 0, 1, 0, 0, 0 0, 0, 0, 0, 1, 0, 0 0, 0, 0, 0, 0, 1, 0 0, 0, 0, 0, 0, 0, 13、试求出习题1中给出的A和B矩阵的特征多项式、特征值与特征向量,并对它们进行LU分解。【求解】仍以A 矩阵为例。 A=5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2;10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7; A=sym(A);eig(A)ans =5.009396680079366526215873006955228.679593193974410579078264020229.27480714110743938760483528351799e-1+1.1755376247101009492093136044131*i-1.6336795424500642956747726147329+6.9740721596526560301948635104611*i-3.4765922173751363914655588544224-1.6336795424500642956747726147329-6.9740721596526560301948635104611*i.27480714110743938760483528351799e-1-1.1755376247101009492093136044131*i p=poly(A)p =x7-27*x6-18*x5-1000*x4+3018*x3+24129*x2+2731*x+35432 p=sym2poly(p)p =1 -27 -18 -1000 3018 24129 2731 35432 L U=lu(A)L =0.5000 0.5072 0.5556 0.1099 0.5000 0.5376 1.00000.2000 0.2319 -0.7500 0.6429 0.5702 1.0000 00.6000 -0.0290 -0.9444 1.0000 0 0 00.3000 1.0000 0 0 0 0 01.0000 0 0 0 0 0 00.7000 -0.4203 1.0000 0 0 0 00.4000 0.7536 0.2778 0.6484 1.0000 0 0U =10.0000 7.0000 6.0000 0 0 7.0000 7.00000 6.9000 4.2000 3.0000 6.0000 3.9000 -0.10000 0 1.5652 5.2609 2.5217 3.7391 2.05800 0 0 5.0556 8.5556 3.4444 1.74070 0 0 0 -8.7692 -8.0110 2.57510 0 0 0 0 3.8534 1.57940 0 0 0 0 0 -1.92044、试求下面齐次方程的基础解系。 【求解】可以将方程写成矩阵形式,得出的两列向量为方程的基础解系。 A=6,1,4,-7,-3; -2,-7,-8,6,0; -4,5,1,-6,8;-34,36,9,-21,49; -26,-12,-27,27,17; A=sym(A);rank(A)ans =3 null(A)ans = 191/34, 95/17 0, 1 1, 0 109/34, 103/34 173/34, 151/345、试求下面线性代数方程的解析解与数值解,并检验解的正确性。【求解】求出A, A;B 两个矩阵的秩,可见二者相同,所以方程不是矛盾方程,应该有无穷多解。 A=2,-9,3,-2,-1; 10,-1,10,5,0; 8,-2,-4,-6,3; -5,-6,-6,-8,-4;B=-1,-4,0; -3,-8,-4; 0,3,3; 9,-5,3;rank(A), rank(A B)ans =4 4用下面的语句可以求出方程的解析解,并可以验证该解没有误差。 x0=null(sym(A);x_analytical=sym(A)B; syms a;x=a*x0 x0 x0+x_analyticalx = a+967/1535, a-943/1535, a-159/1535 -1535/1524*a, -1535/1524*a, -1535/1524*a -3659/1524*a-1807/1535,-3659/1524*a-257/1535,-3659/1524*a-141/1535 1321/508*a+759/1535, 1321/508*a-56/1535, 1321/508*a-628/1535 -170/127*a-694/307, -170/127*a+719/307, -170/127*a+103/307 A*x-Bans = 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0用数值解方法也可以求出方程的解,但会存在误差,且与任意常数a 的值有关。 x0=null(A); x_numerical=AB; syms a;x=a*x0 x0 x0+x_numerical; vpa(x,10)ans = .2474402553*a+.1396556436, .2474402553*a-.6840666849, .2474402553*a-.1418420333-.2492262414*a+.4938507789,-.2492262414*a+.7023776988e-1,-.2492262414*a+.3853511888e-1 -.5940839201*a, -.5940839201*a, -.5940839201*a .6434420813*a-.7805411315, .6434420813*a-.2178190763,.6434420813*a-.5086089095-.3312192394*a-1.604263460, -.3312192394*a+2.435364854, -.3312192394*a+.3867176824 A*x-Bans = 1/18014398509481984*a, 1/18014398509481984*a, 1/18014398509481984*a -5/4503599627370496*a, -5/4503599627370496*a, -5/4503599627370496*a -25/18014398509481984*a, -25/18014398509481984*a, -25/18014398509481984*a 13/18014398509481984*a, 13/18014398509481984*a, 13/18014398509481984*a6、试判定下面的线性代数方程是否有解。 【求解】由秩判定矩阵可以得出如下结果。 A=16,2,3,13; 5,11,10,8; 9,7,6,12; 4,14,15,1;B=1; 3; 4; 7;rank(A), rank(A B)ans =3 4由得出的结果看,A, A;B 两个矩阵的秩不同,故方程是矛盾方程,没有解。7、求解能转换成多项式方程的联立方程,并检验得出的高精度数值解(准解析解)的精度。【求解】中给出的方程可以由下面的语句直接求解,经检验可见,精度是相当高的。 x1,x2=solve(x12-x2-1=0,(x1-2)2+(x2-0.5)2-1=0,x1,x2)x1 =-1.3068444845633173592407431426632-1.2136904451605911320167045558746*sqrt(-1)-1.3068444845633173592407431426632+1.2136904451605911320167045558746*sqrt(-1)1.06734608580668971340859731280701.5463428833199450050728889725194x2 =-.76520198984055124633885565606586+3.1722093284506318231178646481143*sqrt(-1)-.76520198984055124633885565606586-3.1722093284506318231178646481143*sqrt(-1).139227666886861440483624988051411.3911763127942410521940863240803 norm(double(x1.2-x2-1 (x1-2).2+(x2-0.5).2-1)ans =6.058152713871457e-031现在考虑中的方程,可以由下面的语句求解并检验精度。 x,y,z=solve(x2*y2-z*x*y-4*x2*y*z2=x*z2,.x*y3-2*y*z2=3*x3*z2+4*x*z*y2,.y2*x-7*x*y2+3*x*z2=x4*z*y,x,y,z)x =00x.31763330066708094899226744383315-.57342208805666904699955413755046-3.04146693155153933428912148602561.2406494592172202024946761755143+2.6726341184257446950051342796237*sqrt(-1)1.9395779085729820052691770221678-1.8460302354285923475099876321714*sqrt(-1)-.12175724403625789114277654158125+.76608643264311922968528253940276*sqrt(-1)-2.2119059377823750236571580666120-1.3098483298501442852199024916922*sqrt(-1).18091793647835958266865409918250-.43514167087309843831595260429068*sqrt(-1)-.55869174189107447600021216575845+2.3297622385407573613585339888001*sqrt(-1)-.686803074115640991033949969372512.2449864792628313778324119367846.80149155267622824623322517103811-.55869174189107447600021216575845-2.3297622385407573613585339888001*sqrt(-1).18091793647835958266865409918250+.43514167087309843831595260429068*sqrt(-1)-2.2119059377823750236571580666120+1.3098483298501442852199024916922*sqrt(-1)-.12175724403625789114277654158125-.76608643264311922968528253940276*sqrt(-1)1.9395779085729820052691770221678+1.8460302354285923475099876321714*sqrt(-1)1.2406494592172202024946761755143-2.6726341184257446950051342796237*sqrt(-1)y =0y0-.10247418659393300993582067594235.881869085828446669775413159224726.22062052784939111812665691432403.8883892104923440119866877297435+2.6775872796906346863164643745055*sqrt(-1)-.19521984362257729205542902543230+2.1755659889967168917621095367660*sqrt(-1).19300043308429639136627772430949+.55085821682149293523314538512818*sqrt(-1)-1.5345777137990494704652954417309+.42952982009383733582600047744276e-1*sqrt(-1).59285406023469299432404383306933e-1-.14560032849820344999561561093140*sqrt(-1)-.13504742647411551604956518296040-1.3353390289175827351921401819303*sqrt(-1).232066810258588865786392160953791.2500352093099975887186243233388-.40877757806122608090142625675228-.13504742647411551604956518296040+1.3353390289175827351921401819303*sqrt(-1).59285406023469299432404383306933e-1+.14560032849820344999561561093140*sqrt(-1)-1.5345777137990494704652954417309-.42952982009383733582600047744276e-1*sqrt(-1).19300043308429639136627772430949-.55085821682149293523314538512818*sqrt(-1)-.19521984362257729205542902543230-2.1755659889967168917621095367660*sqrt(-1)3.8883892104923440119866877297435-2.6775872796906346863164643745055*sqrt(-1)z =z00.144374098008649355676671716460441.21974655225377469025992963444731.29771987219105106024449502544321.0166830329716235095778013718903+.37011032131730244971789188681237*sqrt(-1).45233167057904744299654223927744+.51464117109451634939209195854989*sqrt(-1).31864673037377358785409663022781+.78415604801861425880017838557048*sqrt(-1).38457694363000428639271157033224e-1+.57967291207543468143911103709180*sqrt(-1)-.83830187383058822380943737709146e-1+.20866770020547056525334588752981*sqrt(-1)-.36349211548848392020797588683844+.46022200523351838974797619203293*sqrt(-1)-.34096135567852262861343237947182-.58923295037333858669309875602950-.61423986723341834383214878861209-.36349211548848392020797588683844-.46022200523351838974797619203293*sqrt(-1)-.83830187383058822380943737709146e-1-.20866770020547056525334588752981*sqrt(-1).38457694363000428639271157033224e-1-.57967291207543468143911103709180*sqrt(-1).31864673037377358785409663022781-.78415604801861425880017838557048*sqrt(-1).45233167057904744299654223927744-.51464117109451634939209195854989*sqrt(-1)1.0166830329716235095778013718903-.37011032131730244971789188681237*sqrt(-1) norm(double(x.2.*y.2-z.*x.*y-4*x.2.*y.*z.2-x.*z.2,.x.*y.3-2*y.*z.2-3*x.3.*z.2-4*x.*z.*y.2,.y.2.*x-7*x.*y.2+3*x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂合作合同范本
- 古建材料合同范本
- 2025年地区经销商授权合同书
- 2025婚庆服务合同陷阱揭秘
- 车辆过户尾款合同范本
- 房屋出售经纪合同范本
- 和模特签约合同范本
- 旅游订金合同范本
- 企业车辆抵押合同范本
- 建材家居定制合同范本
- 2023年安徽师范大学医院高校医学专业毕业生招聘考试历年高频考点试题含答案解析
- YY 0271.2-2009牙科水基水门汀第2部分:光固化水门汀
- GB/T 18341-2021地质矿产勘查测量规范
- 三查四定(含详细内容介绍)课件
- 企业生产安全隐患排查奖励台账
- oh卡牌理论-课件
- 合同工期管理台账
- 赏识你的学生
- 心衰病患者护理查房课件
- TSG11-2020 锅炉安全技术规程
- 哲学导论(完整版)
评论
0/150
提交评论