全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
儿童的直觉理论-数的理论 和将实体分类为“物质种类同步发展的另一种能力,是以数字方式处理实物的能力,即把事物概念化为不同大小的集合。我们已经看到.耍儿已经展示了一种对数字的原始知觉(数字感),而有数字映象的四岁儿童则喜欢到处点算事物。除此以外,正常的学前儿童还渐渐发展出另外一整组重要的理解力。格尔曼(RochelGelman)也许是当前关于数字理解力研究最主要的学者,他有一些关于数字的“原理”可供广泛使用。四岁的儿童已经明白:在一个行列中的每一个个体都应该以一个并且只有一个数字来表示;这些数字的顺序必须维持稳定不变;最后说出的数字也就是行列中个体的个数;人可以点算任何一堆实体;行列中任何一个特定的成员以什么顺序被贴上标签并不重要,只要每一个个体只被贴标签一次就可以了。一般来说,幼童很喜欢估计数字,觉得这跟那些似乎比较容易感知到的性质,如颜色、形状和大小等比较,颇为不同。他们会马上注意到一个集合中元素个数的改变。 新皮亚杰学派的研究者凯斯假设关于“数字线”的知识的存在一些可以依据个数来评估任何实体的心理模型。如果说这样的理解力是天生的,也许有点夸张,但若说它们是学习来的,或是以任何传统意义下的教育所获得的.也同样是一种误导。其实,假定儿盆生活在一个总有人在使用数字的环境里,他在学前的几年内出现这样的理解力,是必然的。跟语言一样,我们很难想象,一个幼童如果没有渐渐萌芽的数字能力,如何能应付周围环境;如何能追踪他周围环境中的游戏、书本、事物甚至朋友们;如何只对他生活环境中的物体有反应。同样地.也很难想象,如果数字能力在使用范围上有显著变化时,情况会变得怎么样。比如说,假设每一类型的实体都必须以一种不同的方式点算,或是假使点算的方式是随着你要汇报的对象不同或是计数的目的不同而改变,甚至当整个点算的概念根本就不存在时.情况又会是怎么样?在这些情形下,我们就好像是在跟另一种人类甚至是另一种生物打交道似的。既然儿童很早就有强烈的了解数字领域的倾向,并且随时准备以正确的方式计数.那么我们要问,为什么那些比较正式的数学领域教育,会给儿童们造成这么大的困难(这个问题简直就是另一个断裂情况的回声:为什么几乎所有人都有一定的口语能力,而又常常发现在读、写、拼字上有困难)?我们将在第八章中讨论数学上的问题。这里或许应该指出.能够直接应付周围环境中出现的数盆,并不等于能够运作当时不在环境中数量的记号。并且,有一些在数字领城中被鼓励使用的做法,反而可能干扰正式的数字技能。例如,把集合相加的做法就可能妨碍学习分数的加法.儿童自然想把分子和分子相加,分母和分母相加,认为这样得到的答案才是正确的。 和将实体分类为“物质种类同步发展的另一种能力,是以数字方式处理实物的能力,即把事物概念化为不同大小的集合。我们已经看到.耍儿已经展示了一种对数字的原始知觉(数字感),而有数字映象的四岁儿童则喜欢到处点算事物。除此以外,正常的学前儿童还渐渐发展出另外一整组重要的理解力。 格尔曼(RochelGelman)也许是当前关于数字理解力研究最主要的学者,他有一些关于数字的“原理”可供广泛使用。四岁的儿童已经明白:在一个行列中的每一个个体都应该以一个并且只有一个数字来表示;这些数字的顺序必须维持稳定不变;最后说出的数字也就是行列中个体的个数;人可以点算任何一堆实体;行列中任何一个特定的成员以什么顺序被贴上标签并不重要,只要每一个个体只被贴标签一次就可以了。一般来说,幼童很喜欢估计数字,觉得这跟那些似乎比较容易感知到的性质,如颜色、形状和大小等比较,颇为不同。他们会马上注意到一个集合中元素个数的改变。 新皮亚杰学派的研究者凯斯假设关于“数字线”的知识的存在一些可以依据个数来评估任何实体的心理模型。如果说这样的理解力是天生的,也许有点夸张,但若说它们是学习来的,或是以任何传统意义下的教育所获得的.也同样是一种误导。其实,假定儿盆生活在一个总有人在使用数字的环境里,他在学前的几年内出现这样的理解力,是必然的。 跟语言一样,我们很难想象,一个幼童如果没有渐渐萌芽的数字能力,如何能应付周围环境;如何能追踪他周围环境中的游戏、书本、事物甚至朋友们;如何只对他生活环境中的物体有反应。同样地.也很难想象,如果数字能力在使用范围上有显著变化时,情况会变得怎么样。比如说,假设每一类型的实体都必须以一种不同的方式点算,或是假使点算的方式是随着你要汇报的对象不同或是计数的目的不同而改变,甚至当整个点算的概念根本就不存在时.情况又会是怎么样?在这些情形下,我们就好像是在跟另一种人类甚至是另一种生物打交道似的。 既然儿童很早就有强烈的了解数字领域的倾向,并且随时准备以正确的方式计数.那么我们要问,为什么那些比较正式的数学领域教育,会给儿童们造成这么大的困难(这个问题简直就是另一个断裂情况的回声:为什么几乎所有人都有一定的口语能力,而又常常发现在读、写、拼字上有困难)?我们将在第八章中讨论数学上的问题。这里或许应该指出.能够直接应付周围环境中出现的数盆,并不等于能够运作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 7 Happy Birthday 单元测试题-2025-2026学年人教版七年级英语上册
- 戒烟护理基础:烟草危害与戒烟必要性解析
- 胆道出血个案护理
- 扬州中瑞酒店职业学院《MATAB设计与实践》2024-2025学年第一学期期末试卷
- 浙江长征职业技术学院《五官医学》2024-2025学年第一学期期末试卷
- 浙江“七彩阳光”新2025年高一物理第一学期期末达标检测试题含解析
- 陕西省汉中市汉台区县2025-2026学年高一上生物期末检测模拟试题含解析
- 2026年中考英语核心词汇识记手册Day8
- 2026年高考数学一轮复习:三角函数的图象与性质(讲义)解析版
- 2026年中考数学复习热搜题之分式方程
- 量感解读课件
- 酒店销售培训课件
- 担保协议模板合同(第三方公司担保版)6篇
- 人工智能在金融投资决策支持中的应用研究报告
- 《原来平常也可贵》(2023年广西地区中考满分作文6篇附审题指导)
- 保安消防知识培训幼儿园课件
- 电磁阀培训课件
- 肾包膜下血肿课件
- 信号工安全型继电器课件
- 高警示药物培训课件
- 外幕墙清洗安全培训课件
评论
0/150
提交评论