全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5 从力做的功到向量的数量积(二)学习目标1.掌握平面向量数量积的运算律及常用的公式.2.会利用向量数量积的有关运算律进行计算或证明知识点一平面向量数量积的运算律类比实数的运算律,判断下表中的平面向量数量积的运算律是否正确运算律实数乘法向量数量积判断正误交换律abbaabba结合律(ab)ca(bc)(ab)ca(bc)分配律(ab)cacbc(ab)cacbc消去律abbc(b0)acabbc(b0)ac知识点二平面向量数量积的运算性质类比多项式乘法的乘法公式,写出下表中的平面向量数量积的运算性质多项式乘法向量数量积(ab)2a22abb2(ab)2a22abb2(ab)(ab)a2b2(abc)2a2b2c22ab2bc2ca梳理与多次式乘法公式类似,平面向量数量积也有相似公式,应用公式时不要漏写数量积中的点乘符号“”类型一向量数量积的运算性质例1给出下列结论:若a0,ab0,则b0;若abbc,则ac;(ab)ca(bc);ab(ac)c(ab)0,其中正确结论的序号是_反思与感悟向量的数量积ab与实数a、b的乘积ab有联系,同时有许多不同之处例如,由ab0并不能得出a0或b0.特别是向量的数量积不满足结合律跟踪训练1设a,b,c是任意的非零向量,且互不平行,给出以下说法:(ab)c(ca)b0;(bc)a(ca)b不与c垂直;(3a2b)(3a2b)9|a|24|b|2.其中正确的是_(填序号)类型二平面向量数量积有关的参数问题命题角度1已知向量垂直求参数值例2已知两个单位向量a,b的夹角为60,cta(1t)b,且bc,则t_.反思与感悟由两向量垂直求参数一般是利用性质:abab0.跟踪训练2已知向量a(k,3),b(1,4),c(2,1),且(2a3b)c,则实数k等于()A B0 C3 D.命题角度2由两向量夹角的取值范围求参数的取值范围例3已知e1与e2是两个互相垂直的单位向量,若向量e1ke2与ke1e2的夹角为锐角, 则k的取值范围为_反思与感悟由两向量夹角的取值范围,求参数的取值范围,一般利用以下结论:对于非零向量a,b,0,)ab0,(,ab0.跟踪训练3设两个向量e1,e2满足|e1|2,|e2|1,e1,e2的夹角为60,若向量2te17e2与e1te2的夹角为钝角,求实数t的取值范围1下面给出的关系式中正确的个数是()0a0;abba;a2|a|2;|ab|ab;(ab)2a2b2.A1 B2 C3 D42已知|a|1,|b|,且(ab)与a垂直,则a与b的夹角是()A60 B30 C135 D453已知平面向量a,b满足|a|3,|b|2,a与b的夹角为60,若(amb)a,则实数m的值为()A1 B0 C2 D34已知正三角形ABC的边长为1,设c,a,b,那么abbcca的值是()A. B.C D5已知|a|2,|b|1,(2a3b)(2ab)9.(1)求a与b之间的夹角;(2)求向量a在ab上的射影1数量积对结合律不一定成立,因为(ab)c|a|b|cosa,bc是一个与c共线的向量,而(ac)b|a|c|cosa,cb是一个与b共线的向量,若b与c不共线,则两者不相等2在实数中,若ab0,则a0或b0,但是在数量积中,即使ab0,也不能推出a0或b0,因为其中cos 有可能为0.3在实数中,若abbc,b0,则ac,在向量中abbc,b0D/ac.答案精析知识梳理知识点一正确错误正确错误知识点二(ab)2a22abb2(ab)2a22abb2(ab)(ab)a2b2(abc)2a2b2c22ab2bc2ca题型探究例1跟踪训练1例22跟踪训练2C例3(0,1)(1,)跟踪训练3解设向量2te17e2与e1te2的夹角为.根据题意,得cos 0,(2te17e2)(e1te2)0.化简,得2t215t70,解得7t.当时,也有(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 46769-2025涂料生产企业安全技术规范
- 2025年赤峰辅警招聘考试题库含答案详解(满分必刷)
- 2025年辽阳辅警招聘考试题库附答案详解(巩固)
- 2025年渭南辅警招聘考试真题附答案详解ab卷
- 2025年铁岭辅警招聘考试真题及答案详解1套
- 2025年黄山辅警招聘考试题库及答案详解(真题汇编)
- 2025年长治辅警招聘考试真题附答案详解(典型题)
- 2025年萍乡辅警协警招聘考试备考题库附答案详解(能力提升)
- 2025年邯郸辅警招聘考试题库及答案详解(考点梳理)
- 2025年随州辅警招聘考试题库附答案详解ab卷
- 广告法法律培训课件
- 房建工程质量标准化实施手册(2025版)
- 中外教育名著选读:杜威教育思想解析
- 空军招飞测试题及答案
- 《民族团结一家亲同心共筑中国梦》主题班会
- 初中生劳动教育考试试题及答案
- 麻醉意外与并发症处理规范与流程
- 北京高层现代简约定向安置房项目投标文本
- 《热转印技术》课件
- 坦克介绍教学课件
- JJG972-2023离心式恒加速度试验机检定规程
评论
0/150
提交评论