已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
theseiconsindicatethatteacher snotesorusefulwebaddressesareavailableinthenotespage thisiconindicatestheslidecontainsactivitiescreatedinflash theseactivitiesarenoteditable formoredetailedinstructions seethegettingstartedpresentation boardworksltd2006 1of40 a levelmaths core3forocr c3 6differentiationandintegration2 contents boardworksltd2006 2of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion integralsofstandardfunctions reviewofintegration sofar wehaveonlylookedatfunctionsthatcanbeintegratedusing forexample integratewithrespecttox theintegralof adding1tothepowerandthendividingwouldleadtothemeaninglessexpression theonlyfunctionoftheformxnthatcannotbeintegratedbythismethodisx 1 thisdoesnotmeanthatcannotbeintegrated therefore theintegralof wecanonlyfindthelogofapositivenumberandsothisisonlytrueforx 0 wecangetaroundthisbytakingxtobenegative however doesexistforx 0 butnotx 0 sohowdoweintegrateitforallpossiblevaluesofx ifx0so wecancombinetheintegralsofforbothx 0andx 0byusingthemodulussigntogive theintegralof find thisisjusttheintegralofmultipliedbyaconstant find definiteintegralsinvolving itisparticularlyimportanttorememberthemodulussignwhenevaluatingdefiniteintegralsoffunctionsinvolving findtheareaunderthecurvey betweenx 3 x 1andthex axis writingyouranswerintheformlna 1 3 theareaisgivenby rememberthatln1 0 unitssquared definiteintegralsinvolving weshouldnotethatdefiniteintegralsoftheformcanonly beevaluatedifx 0doesnotlieintheinterval a b integralsofstandardfunctions byreversingtheprocessofdifferentiationwecanderivetheintegralsofsomestandardfunctions theseintegralsshouldbememorized integralsofstandardfunctions also ifanyfunctionismultipliedbyaconstantkthenitsintegralwillalsobemultipliedbytheconstantk find inpracticemostofthesestepscanbeleftout contents boardworksltd2006 11of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion reversingthechainrule reversingthechainrule averyhelpfultechniqueistorecognizethatafunctionthatwearetryingtointegrateisofaformgivenbythedifferentiationofacompositefunction thisissometimescalledintegrationbyrecognition let bythechainrule so itfollowsthatforn 1 reversingthechainrule supposewewanttointegrate 2x 7 5withrespecttox iftheintegralismultipliedbyaconstantk considerthederivativeofy 2x 7 6 usingthechainrule 12 2x 7 5 so don ttrytolearnthisformula justtrytorecognizethatthefunctionyouareintegratingisoftheformk f x nf x andcompareittothederivativeof f x n 1 reversingthechainrule ingeneral youcanintegrateanylinearfunctionraisedtoapowerusingtheformula withpractice integralsofthistypecanbewrittendowndirectly forexample reversingthechainrule integratey x 3x2 4 3withrespecttox noticethatthederivativeof3x2 4is6x usingthechainrule 24x 3x2 4 3 so let slookatsomemoreintegralsoffunctionsoftheformk f x nf x nowconsiderthederivativeofy 3x2 4 4 reversingthechainrule nowconsiderthederivativeofy 2x3 9 3 so find noticethatthederivativeof2x3 9is6x2 reversingthechainrule so find startbywritingas nowconsiderthederivativeofy x2isthederivativeof x3 1 plus1is usingthechainrule reversingthechainruleforexponentialfunctions whenweappliedthechainruletofunctionsoftheformef x weobtainedthefollowinggeneralization wecanreversethistointegratefunctionsoftheformkf x ef x forexample anumericaladjustmentisusuallynecessary reversingthechainruleforexponentialfunctions ingeneral find reversingthechainruleforexponentialfunctions withpractice thismethodcanbeextendedtocaseswheretheexponentisnotlinear forexample find noticethatthederivativeof2x2is4xandsothefunctionweareintegratingisoftheformkf x ef x contents boardworksltd2006 21of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion integrationbysubstitution integrationbysubstitution withpractice thetechniqueofintegrationbyrecognitioncansavealotoftime however whenitistoodifficulttouseintegrationbyrecognitionwecanuseamoreformalmethodofreversingthechainrulecalledintegrationbysubstitution toseehowthismethodworksconsidertheintegral letu 5x 2sothat theproblemnowisthatwecan tintegrateafunctioninuwithrespecttox wethereforeneedtowritedxintermsofdu integrationbysubstitution nowchangethevariablebacktox whenweusedthechainrulefordifferentiationwesawthatwecantreatinformallyasafraction so soifu 5x 2anddx integrationbysubstitution useasuitablesubstitutiontofind letu 2x2 5 substitutinguanddxintotheoriginalproblemgives noticethatthex scancelout integrationbysubstitution thisintegralcouldalsohavebeenfounddirectlybyrecognition nowweneedtochangethevariablebacktox however therearefunctionsthatcanbeintegratedbyuseofasuitablesubstitutionbutnotbyrecognition forinstance usethesubstitutionu 1 2xtofind ifu 1 2xthen integrationbysubstitution substitutingtheseintotheoriginalproblemgives wealsohavetosubstitutethexsothatthewholeintegrandisintermsofu alsoifu 1 2xthen integrationbysubstitution changingthevariablebacktoxgives definiteintegrationbysubstitution whenadefiniteintegralisfoundbysubstitutionitiseasiesttorewritethelimitsofintegrationintermsofthesubstitutedvariable ifu then usingthechainrulefordifferentiation definiteintegrationbysubstitution rewritethelimitsintermsofu nowweneedtofindxintermsofu u2 8 x x 8 u2 whenx 3 whenx 1 theareaisgivenby rewritethisintermsofu ifu then definiteintegrationbysubstitution therefore therequiredareaisunitssquared contents boardworksltd2006 31of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion volumesofrevolution volumesofrevolution considertheareaboundedbythecurvey f x thex axisandx aandx b ifthisareaisrotated360 aboutthex axisathree dimensionalshapecalledasolidofrevolutionisformed thevolumeofthissolidiscalleditsvolumeofrevolution volumesofrevolution wecancalculatethevolumeofrevolutionbydividingthevolumeofrevolutionintothinslicesofwidth x volumesofrevolution thetotalvolumeofthesolidisgivenbythesumofthevolumeoftheslices thesmaller xis thecloserthisapproximateareaistotheactualarea wecanfindtheactualareabyconsideringthelimitofthissumas xtendsto0 thislimitisrepresentedbythefollowingintegral volumesofrevolution soingeneral thevolumeofrevolutionvofthesolidgeneratedbyrotatingthecurvey f x betweenx aandx baboutthex axisis similarly thevolumeofrevolutionvofthesolidgeneratedbyrotatingthecurvex f y betweeny aandy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年通化市二道江区教师招聘参考题库及答案解析
- 细菌性痢疾常见症状及护理技术训练
- 2025年北京市崇文区中小学教师招聘笔试参考题库及答案解析
- 2025年虚拟主播合作协议
- 《病理学(第9版)学习指导与习题集》题库500题(含答案)
- 2025年蓝山县中小学教师招聘笔试备考试题及答案解析
- 2025年烟台市中小学教师招聘笔试参考题库及答案解析
- 山东省莱山第一中学2025年高一上化学期中质量跟踪监视试题含解析
- 陕西省西安市第25中学2025-2026学年数学高一第一学期期末调研试题含解析
- 岳阳市重点中学2025年高一上物理期末监测模拟试题含解析
- 学术不端案例介绍课件
- 保险专业代理机构高级管理人员任职资格申请表
- 法学概论(第七版) 课件全套 谷春德 第1-7章 我国社会主义法的基本理论 - 国际法
- 产业经济学第四版教学课件第十三章 行业自律
- 《网络空间安全概论》课件7-1-2人工智能安全
- 第八课+法治中国建设+高中政治统编版必修三
- 软件工程中的软件部署与运维指南
- 道路运输企业两类人员安全考核题库(含答案)
- 下肢深静脉血栓护理业务学习
- 房地产管理-华中科技大学中国大学mooc课后章节答案期末考试题库2023年
- 教师职业道德与专业发展知到章节答案智慧树2023年山东师范大学
评论
0/150
提交评论