




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
theseiconsindicatethatteacher snotesorusefulwebaddressesareavailableinthenotespage thisiconindicatestheslidecontainsactivitiescreatedinflash theseactivitiesarenoteditable formoredetailedinstructions seethegettingstartedpresentation boardworksltd2006 1of40 a levelmaths core3forocr c3 6differentiationandintegration2 contents boardworksltd2006 2of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion integralsofstandardfunctions reviewofintegration sofar wehaveonlylookedatfunctionsthatcanbeintegratedusing forexample integratewithrespecttox theintegralof adding1tothepowerandthendividingwouldleadtothemeaninglessexpression theonlyfunctionoftheformxnthatcannotbeintegratedbythismethodisx 1 thisdoesnotmeanthatcannotbeintegrated therefore theintegralof wecanonlyfindthelogofapositivenumberandsothisisonlytrueforx 0 wecangetaroundthisbytakingxtobenegative however doesexistforx 0 butnotx 0 sohowdoweintegrateitforallpossiblevaluesofx ifx0so wecancombinetheintegralsofforbothx 0andx 0byusingthemodulussigntogive theintegralof find thisisjusttheintegralofmultipliedbyaconstant find definiteintegralsinvolving itisparticularlyimportanttorememberthemodulussignwhenevaluatingdefiniteintegralsoffunctionsinvolving findtheareaunderthecurvey betweenx 3 x 1andthex axis writingyouranswerintheformlna 1 3 theareaisgivenby rememberthatln1 0 unitssquared definiteintegralsinvolving weshouldnotethatdefiniteintegralsoftheformcanonly beevaluatedifx 0doesnotlieintheinterval a b integralsofstandardfunctions byreversingtheprocessofdifferentiationwecanderivetheintegralsofsomestandardfunctions theseintegralsshouldbememorized integralsofstandardfunctions also ifanyfunctionismultipliedbyaconstantkthenitsintegralwillalsobemultipliedbytheconstantk find inpracticemostofthesestepscanbeleftout contents boardworksltd2006 11of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion reversingthechainrule reversingthechainrule averyhelpfultechniqueistorecognizethatafunctionthatwearetryingtointegrateisofaformgivenbythedifferentiationofacompositefunction thisissometimescalledintegrationbyrecognition let bythechainrule so itfollowsthatforn 1 reversingthechainrule supposewewanttointegrate 2x 7 5withrespecttox iftheintegralismultipliedbyaconstantk considerthederivativeofy 2x 7 6 usingthechainrule 12 2x 7 5 so don ttrytolearnthisformula justtrytorecognizethatthefunctionyouareintegratingisoftheformk f x nf x andcompareittothederivativeof f x n 1 reversingthechainrule ingeneral youcanintegrateanylinearfunctionraisedtoapowerusingtheformula withpractice integralsofthistypecanbewrittendowndirectly forexample reversingthechainrule integratey x 3x2 4 3withrespecttox noticethatthederivativeof3x2 4is6x usingthechainrule 24x 3x2 4 3 so let slookatsomemoreintegralsoffunctionsoftheformk f x nf x nowconsiderthederivativeofy 3x2 4 4 reversingthechainrule nowconsiderthederivativeofy 2x3 9 3 so find noticethatthederivativeof2x3 9is6x2 reversingthechainrule so find startbywritingas nowconsiderthederivativeofy x2isthederivativeof x3 1 plus1is usingthechainrule reversingthechainruleforexponentialfunctions whenweappliedthechainruletofunctionsoftheformef x weobtainedthefollowinggeneralization wecanreversethistointegratefunctionsoftheformkf x ef x forexample anumericaladjustmentisusuallynecessary reversingthechainruleforexponentialfunctions ingeneral find reversingthechainruleforexponentialfunctions withpractice thismethodcanbeextendedtocaseswheretheexponentisnotlinear forexample find noticethatthederivativeof2x2is4xandsothefunctionweareintegratingisoftheformkf x ef x contents boardworksltd2006 21of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion integrationbysubstitution integrationbysubstitution withpractice thetechniqueofintegrationbyrecognitioncansavealotoftime however whenitistoodifficulttouseintegrationbyrecognitionwecanuseamoreformalmethodofreversingthechainrulecalledintegrationbysubstitution toseehowthismethodworksconsidertheintegral letu 5x 2sothat theproblemnowisthatwecan tintegrateafunctioninuwithrespecttox wethereforeneedtowritedxintermsofdu integrationbysubstitution nowchangethevariablebacktox whenweusedthechainrulefordifferentiationwesawthatwecantreatinformallyasafraction so soifu 5x 2anddx integrationbysubstitution useasuitablesubstitutiontofind letu 2x2 5 substitutinguanddxintotheoriginalproblemgives noticethatthex scancelout integrationbysubstitution thisintegralcouldalsohavebeenfounddirectlybyrecognition nowweneedtochangethevariablebacktox however therearefunctionsthatcanbeintegratedbyuseofasuitablesubstitutionbutnotbyrecognition forinstance usethesubstitutionu 1 2xtofind ifu 1 2xthen integrationbysubstitution substitutingtheseintotheoriginalproblemgives wealsohavetosubstitutethexsothatthewholeintegrandisintermsofu alsoifu 1 2xthen integrationbysubstitution changingthevariablebacktoxgives definiteintegrationbysubstitution whenadefiniteintegralisfoundbysubstitutionitiseasiesttorewritethelimitsofintegrationintermsofthesubstitutedvariable ifu then usingthechainrulefordifferentiation definiteintegrationbysubstitution rewritethelimitsintermsofu nowweneedtofindxintermsofu u2 8 x x 8 u2 whenx 3 whenx 1 theareaisgivenby rewritethisintermsofu ifu then definiteintegrationbysubstitution therefore therequiredareaisunitssquared contents boardworksltd2006 31of40 integralsofstandardfunctionsreversingthechainruleintegrationbysubstitutionvolumesofrevolutionexamination stylequestion volumesofrevolution volumesofrevolution considertheareaboundedbythecurvey f x thex axisandx aandx b ifthisareaisrotated360 aboutthex axisathree dimensionalshapecalledasolidofrevolutionisformed thevolumeofthissolidiscalleditsvolumeofrevolution volumesofrevolution wecancalculatethevolumeofrevolutionbydividingthevolumeofrevolutionintothinslicesofwidth x volumesofrevolution thetotalvolumeofthesolidisgivenbythesumofthevolumeoftheslices thesmaller xis thecloserthisapproximateareaistotheactualarea wecanfindtheactualareabyconsideringthelimitofthissumas xtendsto0 thislimitisrepresentedbythefollowingintegral volumesofrevolution soingeneral thevolumeofrevolutionvofthesolidgeneratedbyrotatingthecurvey f x betweenx aandx baboutthex axisis similarly thevolumeofrevolutionvofthesolidgeneratedbyrotatingthecurvex f y betweeny aandy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《小学教师招聘》考前冲刺练习试题及参考答案详解(巩固)
- 2025年教师资格综合素质试卷及答案
- 押题宝典演出经纪人之《演出经纪实务》通关考试题库及参考答案详解(培优)
- 教师招聘之《幼儿教师招聘》强化训练模考卷及答案详解(易错题)
- 教师招聘之《小学教师招聘》自我提分评估附答案详解(满分必刷)
- 教师招聘之《小学教师招聘》考前自测高频考点模拟试题附答案详解【夺分金卷】
- 演出经纪人之《演出经纪实务》考试历年机考真题集附答案详解(培优b卷)
- 2025山西焦煤集团所属煤炭子公司井下操作技能人员招聘模拟试卷及答案
- 安全知识系列培训课程课件
- 福建省泉州市安溪一中、惠安一中、养正中学、实验中学2024-2025学年高二上学期期中联考政治试卷(含答案)
- 《中国名菜》课程标准
- 《商务数据分析与处理》高职电子商务数据分析全套教学课件
- 工程派工管理办法
- 建筑工地基孔肯雅热防控和应急方案
- 校服供货考核管理办法
- 生活物资供应协议合同书
- 内部控制与风险管理课件
- 初中班级管理课件
- 住房公积金稽核管理办法
- 颈椎病术后护理常规
- 2025年电信项目管理工程师考试试题
评论
0/150
提交评论