




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 随机变量及其分布练习题一、选择题1任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为()A B C D2在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为,则事件A在1次试验中发生的概率为()A B C D3若XB(10,0.8),则P(X8)等于()AC0.880.22 BC0.820.28 C0.880.22 D0.820.284若X是一个随机变量,则E(XE(X)的值为()A无法求B0 CE(X) D2E(X)5某人从家乘车到单位,途中有3个交通岗假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为()A0.4 B1.2 C0.43 D0.66已知随机变量的概率分布如下表所示:012P且23,则E()等于()A. B. C.D.7随机变量的分布列为123P0.20.5m则的数学期望是()A2 B2.1 C2.3D随m的变化而变化8某班有的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数B,则E()的值为() A. B C. D9有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是()A7.8 B8 C16D15.610设随机变量的分布列如下表:0123P0.1ab0.1且E()1.6,则ab等于()A0.2 B0.1 C0.2 D0.411设一随机试验的结果只有A和且P(A)m,令随机变量,则的方差D()等于() AmB2m(1m) Cm(m1) Dm(1m)12由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:1(甲得分)012P(1xi)0.20.50.32(乙得分)012P(2xi)0.30.30.4现有一场比赛,派哪位运动员参加较好()A甲 B乙 C甲、乙均可D无法确定13已知随机变量,满足8,且服从二项分布B(10,0.6),则E()和D()的值分别是()A6和2.4 B2和2.4 C2和5.6D6和5.614.随机变量X的分布列如下:X123P0.5xy若E(X),则D(X)等于() A. B. C. D.15若随机变量的分布列为P(m),P(n)a,若E()2,则D()的最小值等于()A0 B2 C4D无法计算16某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X(单位:分)的数学期望为()A0.9 B0.8 C1.2 D1.117.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是()A7.8 B8 C16 D15.6二、填空题1一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的期望为_2袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X是取得红球的次数,则E(X)_.3随机变量的取值为0,1,2.若P(0),E()1,则D()_.4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理根据前5年节日期间对这种鲜花需求量(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是_元.200300400500P0.200.350.300.15三、解答题1某师范大学志愿者支教团体有6名男同学,4名女同学在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同)()求选出的3名同学来自互不相同的系的概率;()设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击一次命中的概率为,该射手每次射击的结果相互独立假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X的分布列及数学期望3在“出彩中国人”的一期比赛中,有6位歌手(16)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望4.某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;每位参加者按问题A、B、C、D顺序作答,直至答题结束假设甲同学对问题A、B、C、D回答正确的概率依次为、,且各题回答正确与否相互之间没有影响(1)求甲同学能进入下一轮的概率;(2)用表示甲同学本轮答题结束时答题的个数,求的分布列和数学期望E()第二章 随机变量及其分布练习题一、选择题1任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为()A B C D 解析抛一枚硬币,正面朝上的概率为,则抛三枚硬币,恰有2枚朝上的概率为PC2.2在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为,则事件A在1次试验中发生的概率为()A B C D 解析事件A在一次试验中发生的概率为p,由题意得1Cp0(1p)4,所以1p,p,3若XB(10,0.8),则P(X8)等于()AC0.880.22 BC0.820.28 C0.880.22 D0.820.28解析XB(10,0.8),P(Xk)C0.8k(10.8)10k,P(X8)C0.880.22,故选A4若X是一个随机变量,则E(XE(X)的值为()A无法求B0 CE(X) D2E(X)解析只要认识到E(X)是一个常数,则可直接运用均值的性质求解E(aXb)aE(X)b,而E(X)为常数,E(XE(X)E(X)E(X)0. 答案B5某人从家乘车到单位,途中有3个交通岗假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为()A0.4 B1.2 C0.43 D0.6 解析途中遇红灯的次数X服从二项分布,即XB(3,0.4),E(X)30.41.2. 答案B6已知随机变量的概率分布如下表所示:012P且23,则E()等于()A. B. C.D.解析:E()012,E()E(23)2E()323.答案:C7随机变量的分布列为123P0.20.5m则的数学期望是()A2 B2.1 C2.3D随m的变化而变化解析:0.20.5m1,m0.3,E()10.220.530.32.1.答案:B8某班有的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数B,则E()的值为()A. B C. D解析:E()5,E()E(),故选D.9有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是()A7.8 B8 C16D15.6解析:X的取值为6,9,12,P(X6),P(X9),P(X12).E(X)69127.8.答案:A10设随机变量的分布列如下表:0123P0.1ab0.1且E()1.6,则ab等于()A0.2 B0.1 C0.2 D0.4解析:根据题意,解得所以ab0.2.答案C11设一随机试验的结果只有A和且P(A)m,令随机变量,则的方差D()等于() AmB2m(1m) Cm(m1)Dm(1m)解析:依题意服从两点分布,D()m(1m),故选D.12由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为:1(甲得分)012P(1xi)0.20.50.32(乙得分)012P(2xi)0.30.30.4现有一场比赛,派哪位运动员参加较好()A甲 B乙 C甲、乙均可D无法确定解析:E(1)E(2)1.1,D(1)1.120.20.120.50.920.30.49,D(2)1.120.30.120.30.920.40.69,D(1)D(2),即甲比乙得分稳定,选甲参加较好,故选A.13已知随机变量,满足8,且服从二项分布B(10,0.6),则E()和D()的值分别是()A6和2.4 B2和2.4 C2和5.6D6和5.6解析:由已知E()100.66,D()100.60.42.4.8,8.E()E()82,D()(1)2D()2.4.答案:B14.随机变量X的分布列如下:X123P0.5xy若E(X),则D(X)等于() A. B. C. D.解析:由得所以D(X)222. 答案:D15若随机变量的分布列为P(m),P(n)a,若E()2,则D()的最小值等于()A0 B2 C4D无法计算解析:由于分布列中,概率和为1,则a1,a. E()2,2.m62n.D()(m2)2(n2)2(n2)2(62n2)22n28n82(n2)2.n2时,D()取最小值0.答案:A16某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X(单位:分)的数学期望为()A0.9 B0.8 C1.2 D1.1 解析X的取值为0、1、2,P(X0)(10.4)(10.5)0.3, P(X1)0.4(10.5)(10.4)0.50.5,P(X2)0.40.50.2,E(X)00.310.520.20.9. 答案A17.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是()A7.8 B8 C16 D15.6 解析X的取值为6、9、12,P(X6),P(X9),P(X12). E(X)69127.8. 答案A二、填空题1一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的期望为_解析:X的可能取值为3,2,1,0,P(X3)0.6;P(X2)0.40.60.24;P(X1)0.420.60.096;P(X0)0.430.064.所以E(X)30.620.2410.09600.0642.376.2袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X是取得红球的次数,则E(X)_.解析:每一次摸得红球的概率为,由XB,则E(X)4.3随机变量的取值为0,1,2.若P(0),E()1,则D()_.解析:由题意设P(1)p,则的分布列如下012Ppp由E()1,可得p,所以D()120212. 答案:4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理根据前5年节日期间对这种鲜花需求量(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则利润的均值是_元.200300400500P0.200.350.300.15解析:节日期间这种鲜花需求量的均值为E()2000.203000.354000.305000.15340(束)设利润为,则51.6(500)5002.53.4450,所以E()3.4E()4503.4340450706(元)三、解答题1某师范大学志愿者支教团体有6名男同学,4名女同学在这10名同学中,3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同)()求选出的3名同学来自互不相同的系的概率;()设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望解:()随机变量的分布列为0123数学期望2.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击一次命中的概率为,该射手每次射击的结果相互独立假设该射手进行一次测试,先向甲靶射击两次,若两次都命中,则通过测试;若两次中只命中一次,则再向乙靶射击一次,命中也可通过测试,其它情况均不能通过测试(1)求该射手通过测试的概率;(2)求该射手在这次测试中命中的次数X的分布列及数学期望解析(1)设“该射手通过测试”为事件A,“向甲靶射击两次都命中”为事件B,“向甲靶射击两次中只命中一次,则再向乙靶射击一次,命中”为事件C事件B,C互斥,且ABC所以该射手通过测试的概率P(A)P(B)P(C)2C.(2)由题意知,X0,1,2. P(X0)2;P(X1)C;P(X2)P(A).所以该射手在这次测试中命中的次数X的分布列为X012P该射手在这次测试中命中的次数X的数学期望为E(X)012.3在“出彩中国人”的一期比赛中,有6位歌手(16)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;(2)用X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望分析(1)设A表示事件:“媒体甲选中3号歌手”,B表示事件“媒体乙选中3号歌手”,C表示事件“媒体丙选中3号歌手”,由等可能事件概率公式求出P(A),P(B),由此利用相互独立事件的概率乘法公式和对立事件的概率公式能求出媒体甲选中3号歌手且媒体乙未选中3号歌手的概率(2)先由等可能事件概率计算公式求出P(C),由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列及数学期望解析(1)设A表示事件“媒体甲选中3号歌手”,B表示事件“媒体乙选中3号歌手”,C表示事件“媒体丙选中3号歌手”,P(A),P(B),媒体甲选中3号且媒体乙未选中3号歌手的概率为P(A )P(A)(1P(B)(1).(2)P(C),由已知得X的可能取值为0,1,2,3,P(X0)P( )(1)(1)(1),P(X1)P(A )P(B )P( C)(1)(1)(1)(1)(1)(1),P(X2)P(AB )P(A C)P(BC)(1)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考点解析-华东师大版7年级下册期末试题附答案详解(基础题)
- 2025年生态修复工程生态系统服务功能评估与生态修复工程环境监测技术挑战报告
- 有用的企业面试题库【基础题】附答案详解
- 解析卷-北京市西城区育才学校7年级数学下册变量之间的关系专项练习试题(含解析)
- 2025年工业互联网平台计算机视觉在电子元件制造缺陷检测的应用前景报告
- 解析卷青岛版8年级数学下册期末试题及参考答案详解(B卷)
- 2025年度夜间经济特色摊位租赁协议范本下载
- 2025版大型超市蔬菜批发供应合同
- 2025版私人合伙旅游度假合作协议书范本
- 2025版房地产项目投资担保合同
- 2024年高级消防员技能鉴定考前必刷必练题库500题(含真题、必会题)
- 非法宗教班会课件
- 《智能客服运营管理》课件
- 管网工程施工组织设计与管理
- 幼儿园开学园长会议发言稿模版
- 2025年大学辅导员选拔考试题库:学生综合素质评价体系评价方法试题
- 酒店前台接待流程及话术
- 2025第三届全国技能大赛竞赛(装配钳工赛项)省选拔赛考试题库(含答案)
- GB/Z 27001-2025合格评定通用要素原则与要求
- 2025年第九届“学宪法、讲宪法”活动知识竞赛测试题库及答案
- 银行规范服务礼仪培训
评论
0/150
提交评论