已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点探究训练(五)平面解析几何中的高考热点问题1(2014全国卷)设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.解(1)根据c及题设知M,2b23ac.2分将b2a2c2代入2b23ac,解得,2(舍去)故C的离心率为.5分(2)由题意,原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.8分由|MN|5|F1N|得|DF1|2|F1N|.设N(x1,y1),由题意知y10,则即10分代入C的方程,得1.将及c代入得1.解得a7,b24a28,故a7,b2.12分2已知椭圆C的方程为:x22y24.(1)求椭圆C的离心率;(2)设O为坐标原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值解(1)由题意,椭圆C的标准方程为1,所以a24,b22,从而c2a2b22.2分因此a2,c.故椭圆C的离心率e.5分(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x00.因为OAOB,则0,所以tx02y00,解得t.8分又x2y4,所以|AB|2(x0t)2(y02)22(y02)2xy4x44(0x4).10分因为4(0b0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M. 【导学号:31222334】(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得OQMONQ?若存在,求点Q的坐标;若不存在,说明理由解b1,e,解得a22.3分故椭圆C的方程为y21.设M(xM,0),由于点A(m,n)在椭圆C上,1nb0)的右焦点为F(1,0),右顶点为A,且|AF|1.图5(1)求椭圆C的标准方程;(2)若动直线l:ykxm与椭圆C有且只有一个交点P,且与直线x4交于点Q,问:是否存在一个定点M(t,0),使得 0.若存在,求出点M的坐标;若不存在,说明理由. 【导学号:31222335】解(1)由c1,ac1,得a2,b,3分故椭圆C的标准方程为1.5分(2)由消去y得(34k2)x28kmx4m2120,64k2m24(34k2)(4m212)0,即m234k2.8分设P(xP,yP),则xP,yPkxPmm,即P.M(t,0),Q(4,4km),(4t,4km),10分(4t)(4km)t24t3(t1)0恒成立,故即t1.存在点M(1,0)符合题意.12分6(2016全国卷)已知抛物线C:y22x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点(1)若F在线段AB上,R是PQ的中点,证明ARFQ;(2)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程解由题意知F,设直线l1的方程为ya,直线l2的方程为yb,则ab0,且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x(ab)yab0.2分(1)证明:由于F在线段AB上,故1ab0.记AR的斜率为k1,FQ的斜率为k2,则k1bk2.所以ARFQ.5分(2)设l与x轴的交点为D(x1,0),则SABF|ba|FD|ba|,SPQF.8分由题意可得|ba|,所以x10(舍去)或x11.设满足条件的AB的中点为E(x,y)当AB与x轴不垂直时,由kABkDE可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026-2031年中国三光气行业市场全景分析及产业需求研判报告
- 印刷操作员工作周志试题带答案
- 锁店合作协议合同范本
- 新建泵房用地协议书
- 水产饲料购销合同范本
- 标准砂石运输合同范本
- 基于构件技术的嵌入式软件仿真开发平台设计与实现探索
- 基于条件风险方法的含风电场电力系统安全经济调度研究
- 散装饲料合作协议书
- 基于机器视觉的内螺纹参数检测系统:设计、实现与优化
- 护理中专个人简历
- 私人装修合同书怎么写
- 仲裁法司法考试历年真题及答案(1999-2016)
- 次氯酸钠溶液安全技术说明书MSDS
- 2023年商务沟通与谈判的心得体会(四篇)
- GA/T 148-2019法医学病理检材的提取、固定、取材及保存规范
- 《智慧机场发展研究(论文)》
- 《糖尿病教学查房》课件
- DB4401-T 102.1-2020 建设用地土壤污染防治+第1部分:污染状况调查技术规范-(高清现行)
- 2022年公安基础知识考试试题及答案
- 低压电力电缆招标技术规格书
评论
0/150
提交评论