




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第30届全国部分地区大学生物理竞赛 将于2013年12月7日 星期六 下午2 00 4 30考生凭准考证和学生证进入考场 不允许带计算器 并关闭手机及其它通讯工具 每名考生交报名费30元在填写竞赛电子报名表的时候 请同学们务必核对表中的姓名 必须和学生证的一致 若有误 将影响进入考场和获奖证书 领准考证时间 2013年12月7日前 一周内 发放 考证上有具体的考试地点 凡获奖同学期末免考 总评分100分 参加比赛同学中得分较高的 未获奖 我们将在期末成绩中酌情加分5 10分 第30届全国部分地区大学生物理竞赛通知 掌握建立波函数的方法 求原点的振动位移 得到x处的振动状态即为波函数 P点振动落后O点 P点振动超前O点 x前正号的意义 沿x轴正方向各质点相位逐一超前 注意 x前负号的意义 沿x轴正方向各质点相位逐一落后 体积元总机械能 总结 体积元的动能 势能 总能量都随t作周期性变化 动能 势能同时达到最大值 又同时达到最小值 体积元的机械能不守恒 在横波中 波峰位置处 动能和势能都为零 总能量为零 平衡位置处 动能和势能同时最大最大 总能量最大 在行波的传播过程中 体积元的动能和势能的时间关系相同 同相且大小相同 B点 同时 波峰处 B 点v最大 WK最大 平衡位置处 弹性势能正比于相对形变 波动传播能量 振动系统不传播能量 在波动中 每个质元都起着能量转换的作用 不断地吸取能量 又不断地放出能量 因此说振动的传播过程也就是能量的传播过程 下一时刻 本讲主要内容 一 惠更斯原理二 波的衍射三 波的反射和折射 21 3惠更斯原理波的衍射 一 惠更斯原理 惠更斯原理 在波的传播过程中 波阵面 波前 上的每一点都可看作是发射子波的波源 在其后的任一时刻 这些子波的包迹就成为新的波阵面 以穿过小孔的水面波为例 穿过小孔的波与原耒波的形状无关 这说明小孔可以看成是一个新的振源 二 波的衍射 平面波 r vt a 波动在传播的路程中遇到障碍物 能够绕过障碍物的边缘前进 这种现象叫波的衍射或波的绕射 惠更斯原理的基础是几何作图法 它的意义不在于求新的波前 而在于它能解释很多波动现象 a 结论 长波衍射现象明显 方向性不好 短波衍射现象不明显 方向性好 长波 短波是以波长与障碍物的线度相比较而言的 三 波的反射和折射 入射角等于反射角 波动的反射定律 声波的反射 消音室回音壁 波动的折射定律 声波的弯曲 夏日正午的寂静 夜半钟声到客船 本讲主要内容 一 波的叠加原理二 波的干涉三 驻波 21 4波的叠加原理波的干涉 一 波的叠加 1 几列波相遇后 仍保持它们原有的特性 频率 波长 振幅 振动方向等 不变 并按照原耒的方向继续前进 即各波互不干扰 波传播的独立性 2 在相遇区域内 任一点的振动为几列波单独存在时在该点所引起的振动位移的矢量和 波的叠加原理 波动方程 若y1 y2分别是它的解 则y1 y2也是它的解 即上述波动方程遵从叠加原理 爆炸产生的冲击波就不满足线性方程 所以叠加原理不适用 是各种平面波所必须满足的线性偏微分程 波为什么服从叠加原理 任何波都服从叠加原理吗 图示两列振动方向相同的同方向传播的波动的叠加 叠加原理在物理上的重要性还在于可将一列复杂的波分解为简谐波的组合 讨论两列频率相同 振动方向相同 相位相同或相位差恒定的简谐波的叠加 一种最简单也是最重要的波的叠加情况 这两列波叠加后的图像稳定 不随时间而变化 干涉现象是波动形式所独具的重要特征之一 二 波的干涉 满足相干条件的波源称为相干波源 具有恒定的相位差 振动方向相同 或称为具有相同的偏振面 两波源的波振幅相近或相等时干涉现象明显 两波源具有相同的频率 相干条件 P点的合振动为 干涉加强 减弱的条件 两列波传到P点的振动方程为 是一个恒量 不随时间而变 只是空间位置的函数 因此空间每点的合振幅A也是一个恒量 1 合振动的振幅最大 称为相干加强 2 合振动的振幅最小 称为相干减弱 k 0 1 2 时 k 0 1 2 时 两列相干波在空间任一点所引起的两个振动的相位差 3 若 代表从波源S1和S2发出的两列相干波到达空间P点时所经过的路程差 称为波程差 k 0 1 2 A最大 k 0 1 2 A最小 即两列相干波源为同相位时 在两列波的叠加的区域内 在波程差等于零或者等于波长的整数倍的各点 振幅最 即对于两个同相位的相干波源 此时上述条件变为 大 在波程差等于半波长的奇数倍的各点 振幅最小 两列波叠加后的强度 叠加后空间各点的强度重新分布 若I1 I2 则叠加后波的强度 当时 在这些位置波强最大 当时 在这些位置波强最小 I 4I1 I 0 波的干涉之模拟演示图 两列非相干波相遇时 叠加图象不稳定 合成波的强度I I1 I2 没有干涉项 为非相干叠加 解 设A的相位较B超前 则 则P点的相位差应为 合振幅 P点因干涉而静止 BP 25m 例 S1 S2位于x轴上 它们的坐标分别是x10 0m x20 20 5m 是同一介质中的两个波源 它们激起的平面波沿x轴传播 波速200m s 频率为 100Hz 振幅A 5cm 初相差 1 2 2 求 1 x轴上因干涉而静止和加强的各点的位置 2 x20 5m三个区域的能流密度 波的强度 各是多少 解 1 取坐标如图所示 由题知 2m两波在S1左侧的任一点P的相位差 区处处干涉相消 区处处干涉加强 两波在S2右侧的任一点Q的相位差 解 2 x20 5 I 4I0 2 x20 5m三个区域的能流密度 波的强度 各是多少 思考 这一结论有什么物理意义 三 驻波 讨论两列振幅相同的相干波 在同一直线上 沿相反方向传播时所产生的叠加 调节砝码 可以看到弦线上形成了稳定的振动状态 但各点的振幅不同 有些点始终静止不动 而另一些点则振动最强 这就是驻波 驻波是干涉的特例 u u 用图示法耒讨论驻波的产生 t T 8 用图示法耒讨论驻波的产生 u u t T 4 u u 用图示法耒讨论驻波的产生 t 3T 8 u u 用图示法耒讨论驻波的产生 t T 2 u u 用图示法耒讨论驻波的产生 t T 2 u u 驻波有一定的波形 此波形不移动 各点以各自确定的振幅在各自的平衡位置附近振动 没有振动状态或相位的传播 因此驻波是一种特殊的振动状态 不是波 它不具备波的特性 用图示法耒讨论驻波的产生 火焰驻波 合成波 合成以后各点都在做同周期的振动 但各点振幅不同 合振幅最大值发生在的点 因此波腹的位置 根据此表达式耒考查合成后空间各点的情况 用解析法耒讨论驻波 a 考察驻波中各点的振幅 驻波表达式中空间与时间的变量完全分开 完全失去行波的特征 实际上是一种特殊的振动 相邻两个波腹和波节之间的距离都是 2 b 考察驻波中各点的相位 凡是使的各点相位为2 t 凡是使的各点相位为 2 t 而的各点即波节处不振动 合振幅最小值发生在的点 因此波节的位置 因此相邻的波节之间的相位是相同的 而波节的两边相位相反 同一波节间的各点步调一致 相邻波节间各点的步调正好相反 c 考察驻波的能量 当每个质点振动达到最大位移时 各质点动能为零 驻波能量为势能 波节处形变最大 势能集中在波节 y x较大 y x小 当每个质点振动达到平衡位置时 各质点势能为零 驻波能量为动能 波节处速度为零 动能集中在波腹 驻波进行中没有能量的定向传播 总能流密度为零 能量在波腹和波节之间转换 波疏 波密 波疏 波密 有半波损失 无半波损失 d 驻波的形成与边界条件有关 实际中驻波的形成 反射点固定 形成驻波的波节 说明反射波与入射波在该点相位相反 即在反射点处反射波有 相位的突变 称为半波损失 若反射点是自由的 合成的驻波在反射点将形成波腹 反射波与入射波没有相位突变 大的为波密媒质 小的为波疏媒质 波在固定点的反射 入射波和反射波在固定点引起的振动反向 叠加后相消 所以固定点是波节 波在自由点的反射 入射波和反射波在自由点引起的振动同向 叠加后加强 所以自由点是波腹 波疏 波密 举例 这点要求是波节 反射波画成如图形状是否满足边界点为波节呢 一列平面余弦入射波在波密媒质发生反射 在某一时刻波形曲线如图所示 波疏 波密 举例 反射波画成如图形状是否满足边界点为波节呢 一列平面余弦入射波在波密媒质发生反射 在某一时刻波形曲线如图所示 考虑下一时刻t T 4两列波的叠加 显然所画的反射波没有半波损失 举例 一列平面余弦入射波在波密媒质发生反射 在某一时刻波形曲线如图所示 画反射波波形曲线的作图法 步骤一假设不存在界面 画出入射波在界面右边的波形曲线 步骤二波在波密介质界面反射 则将右边的波形向界面移动半个波即反射波有半波损失 步骤二将处理好的界面右边的波形作界面反射到界面左边 即为半波损失反射波波形 例 如图在O点有一平面简谐波源 其振动方程为 产生的波沿x轴正 负方向传播 位于x 3 4处有一个波密介质反射平面MN 1 写出反射波的波动方程 2 写出合成波的波动方程 3 讨论合成波的平均能流密度 第一步 写出入射波函数 第二步 写出入射波在反射点的振动方程 考虑有无半波损失 然后写出反射波在反射面处的振动方程 第三步 写出反射波波函数 注意 反射波的传播方向 要在x正轴上任取一点来写波函数 则反射波的波函数为y反 Acos t 第一步 写出入射波函数 第二步 写出入射波在反射点的振动方程 考虑有无半波损失 然后写出反射波在反射面处的振动方程 第三步 写出反射波波函数 注意 反射波的传播方向 要在x正轴上任取一点来写波函数 y入射波 Acos t 2 x 反射点处的振动方程yMN Acos t 在波密媒质反射有半波损失 Acos t 2 x 3 2 考虑向左传播的入射波 2 在原点O的左方 由O点发出的入射波波函数为 与反射波合成后的波函数 y yR y左 2Acos2 x cos t为一驻波 y反 Acos t 2 x y左 Acos t 2 x 反射波 在原点O的右方 由O点发出的向右的入射波波函数 合成后的波函数 y yR y右 2Acos t 2 x 为一简谐波 y反 Acos t 2 x y右 Acos t 2 x 在原点O的左方 y yR y左 2Acos2 x cos t为一驻波在原点O的右方 y yR y右 2Acos t 2 x 为一简谐波所以 在O点左侧 平均能流I 0 在O点右侧 平均能流为原来的4倍 两端固定的弦线上形成驻波的条件 n 1 2 3 n 1 2 3 两端固定的弦 有界弦 上的驻波 即弦线上形成的驻波波长 频率均不连续 最低的频率称为基频 其它整倍数频率为谐频 系统究竟按那种模式振动 取决于初始条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合作物流服务合同模板
- 2025年工勤技能考试-工勤技能绪论(试题及答案)
- 合作开发新药机制协议
- 质量控制流程检查与改进方案工具
- 劳动合同解除的法律后果
- 同行佣金协议
- 农村社区共建项目协议
- 云南省昭通市大关县一中2026届高一化学第一学期期末达标检测模拟试题含解析
- 产品定价与成本分析工具
- 产品研发流程管理及迭代标准化模板
- 保险车险知识培训总结课件
- 施工合同 补充协议
- 楼梯切割安全生产合同范本
- 2025年银发族市场洞察报告
- 加油站秋季安全知识培训课件
- 部队课件的教学设计方法
- 2025-2026学年人教版2024八年级上册开学摸底考试英语模拟卷
- GB/T 23781-2024黑芝麻糊质量通则
- 2022年晋能控股煤业集团有限公司招聘笔试题库及答案解析
- 福建师范大学各学生组织部门简介
- CAMDS操作方法及使用技巧
评论
0/150
提交评论