




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
clc; clear all; close all;filename, pathname, filterindex = uigetfile(*.jpg;*.tif;*.png;*.gif,All Image Files;. *.*,All Files , 选择待处理图像, . images01.jpg);file = fullfile(pathname, filename);%文件路径和文件名创建合成完整文件名id = Get_Id(file);%得到file中的所有对象Img = imread(file);%根据路径和文件名读取图片到ImgPlate, bw, Loc = Pre_Process(Img); % 车牌区域预处理result = Plate_Process(Plate, id); % 车牌区域二值化处理% 寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割bw = Segmation(result);words = Main_Process(bw); % 主流程处理Write_Mask(words, id); % 写出到模板库str = Pattern_Recognition(words); % 识别function id = Get_Id(file)% 获取图像id信息% 输入参数:% file图像路径% 输出参数:% id图像id信息info = imfinfo(file);FS = 422227 354169 293184 235413 214202 . 130938 490061 120297 98686 137193 . 80558 46208 69947 58110 62115 . 59072 52168 60457 53979 50223;id = find(FS = info.FileSize);if isempty(id) warndlg(未建立该图像模板库,可能运行出错!, 警告); id = 1;endfunction R = Cubic_Spline(P)% 三次样条插值% 输入参数:% P节点矩阵% 输出参数:% R样条节点矩阵% 计算相邻插值点之间的弦长chordlen = sqrt(sum(diff(P, , 1).2,2);% 将弦长参数归一化到0,1上chordlen = chordlen/sum(chordlen);% 计算每个插值节点处的累加弦长,作为给点处的参数cumarc = 0; cumsum(chordlen);x = cumarc;N = size(P, 1);R = ;% 以下部分为一元三次样条插值的程序,对于空间三维数据,以同样的累加% 弦长作为参数,对x,y,z分量做三次一元样条插值得到的结果便是对三维数据% 做三次样条插值for k = 1 : size(P, 2) y = P(:, k); m = zeros(1, N); M = zeros(1, N); n = m; d = m; A = eye(N); A = 2*A; m(1) = 1; n(N) = 1; m(N) = 1; n(1) = 1; for i = 2:N-1 m(i) = (x(i+1)-x(i)/(x(i+1)-x(i-1); n(i) = 1 - m(i); d(i) = 6*(y(i+1) - y(i)/(x(i+1) - x(i) - (y(i) - y(i-1)/(x(i) - x(i-1)/(x(i+1)-x(i-1); end for j = 1 : N-1 A(j, j+1) = m(j); A(j+1, j) = n(j+1); end p = A(2:N-1, 2:N-1); q = d(2:N-1); Q = inv(p)*q; M = zeros(1,N); M(1,1) = 0; M(1,N) = 0; M(1,2:N-1)= Q; S = ; temp = ; for i = 1:N-1 % 对每一个分量计算出来的插值曲线进行采样,以便将其画出。 s = 50;% 采样点个数 z = linspace(x(i),x(i+1),s); h = x(i+1)-x(i); for j = 1:length(z) S(j) = M(i)*(x(i+1)-z(j)3)/(6*h)+M(i+1)*(z(j)-x(i)3)/(6*h)+(y(i)-M(i)*(h2)/6)*(x(i+1)-z(j)/h)+(y(i+1)-M(i+1)*h2/6)*(z(j)-x(i)/h); end temp = temp S; end R(:, k) = temp; endfunction mask = Get_PointSplineMask(Img, Ptn)% 获取封闭有序节点的蒙板图像% Img图像矩阵% Ptn封闭有序节点% 输出参数:% mask蒙板图像if ndims(Img) = 3 I = rgb2gray(Img);else I = Img;endmask = zeros(size(I);Ptn = Cubic_Spline(Ptn); % 样条插值for i = 1 : size(Ptn, 1)-1 pt1 = Ptn(i, :); % 线段起点 pt2 = Ptn(i+1, :); % 线段终点 x1 = pt1(1); y1 = pt1(2); x2 = pt2(1); y2 = pt2(2); % 直线段参数 A = (y1 - y2)/(x1*y2 - x2*y1); B = (-x1 + x2)/(x1*y2 - x2*y1); % 直线段取点 xk = linspace(min(x1, x2), max(x1, x2); if B = 0 yk = linspace(min(y1, y2), max(y1, y2); else yk = (-1 - A*xk)/B; end % 赋值操作 for j = 1 : length(xk) if isnan(round(yk(j) & isnan(round(xk(j) & . isinf(round(yk(j) & isinf(round(xk(j) & . round(yk(j) 0 & round(xk(j) 0 mask(round(yk(j), round(xk(j) = 1; end endendmask = logical(mask); % 类型转换mask = bwmorph(mask, bridge); % 桥接操作mask = imfill(mask, hole); % 补洞操作function Im = Image_Rotate(Img, num, flag)% 旋转校正函数% 输入函数:% Img图像矩阵% num图像序号% flag显示图像窗口% 输出函数:% Im结果图像if nargin 3 flag = 0;endrole = 6 0 0 -13 5 10 0 10 0 -5 2 -1 2 2 0 -5 -2 0 6 2;Im = imrotate(Img, role(num), bilinear);if flag figure(2); subplot(1, 2, 1); imshow(Img); title(原图像); subplot(1, 2, 2); imshow(Im); title(旋转图像);endfunction words = Main_Process(bw, flag_display)% 主流程处理,分割字符并获取% 输入参数:% bw车牌区域图像% flag_display显示图像标记% 输出参数:% words车牌字符数据if nargin 2 flag_display = 1;endm, n = size(bw);k1 = 1;k2 = 1;s = sum(bw); % 列积分投影j = 1; % 列游标while j = n % 寻找车牌图像左侧边界 while s(j) = 0 & j = n-1 j = j + 1; end k1 = j-1; % 车牌图像左侧边界 % 寻找车牌图像右侧边界 while s(j) = 0 & j Tol val, num = min(sum(bw(:, k1+5:k2-5); bw(:, k1+num+5)=0; % 抹去该字符 endend% 再切割bw = Segmation(bw);% 切割出 7 个字符m, n = size(bw);wideTol = round(n/20); % 区域宽度最小约束rateTol = 0.25; % 中心区域比值约束flag = 0;word1 = ;while flag = 0 m, n = size(bw); left = 1; wide = 0; % 找到空隙位置 while sum(bw(:,wide+1) = 0 wide = wide+1; end if wide rateTol flag = 1; word1 = temp; %提取WORD 1 end bw(:, 1:wide) = 0; % 抹去已处理的区域 bw = Segmation(bw); endend% 分割出第二个字符word2, bw = Word_Segmation(bw);% 分割出第三个字符word3, bw = Word_Segmation(bw);% 分割出第四个字符word4, bw = Word_Segmation(bw);% 分割出第五个字符word5, bw = Word_Segmation(bw);% 分割出第六个字符word6, bw = Word_Segmation(bw);% 分割出第七个字符word7, bw = Word_Segmation(bw);wid = size(word1, 2) size(word2, 2) size(word3, 2) . size(word4, 2) size(word5, 2) size(word6, 2) size(word7, 2);maxwid, indmax = max(wid);maxwid = maxwid + 10;wordi = word1;wordi = zeros(size(wordi, 1), round(maxwid-size(word1, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word1, 2)/2);word1 = wordi;wordi = word2;wordi = zeros(size(wordi, 1), round(maxwid-size(word2, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word2, 2)/2);word2 = wordi;wordi = word3;wordi = zeros(size(wordi, 1), round(maxwid-size(word3, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word3, 2)/2);word3 = wordi;wordi = word4;wordi = zeros(size(wordi, 1), round(maxwid-size(word4, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word4, 2)/2);word4 = wordi;wordi = word5;wordi = zeros(size(wordi, 1), round(maxwid-size(word5, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word5, 2)/2);word5 = wordi;wordi = word6;wordi = zeros(size(wordi, 1), round(maxwid-size(word6, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word6, 2)/2);word6 = wordi;wordi = word7;wordi = zeros(size(wordi, 1), round(maxwid-size(word7, 2)/2) wordi zeros(size(wordi, 1), round(maxwid-size(word7, 2)/2);word7 = wordi;% figure(1);% subplot(2, 7, 1); imshow(word1); title(字符1);% subplot(2, 7, 2); imshow(word2); title(字符2);% subplot(2, 7, 3); imshow(word3); title(字符3);% subplot(2, 7, 4); imshow(word4); title(字符4);% subplot(2, 7, 5); imshow(word5); title(字符5);% subplot(2, 7, 6); imshow(word6); title(字符6);% subplot(2, 7, 7); imshow(word7); title(字符7);% 切割出的字符归一化大小为 40*20,此处演示word11 = imresize(word1, 40 20);word21 = imresize(word2, 40 20);word31 = imresize(word3, 40 20);word41 = imresize(word4, 40 20);word51 = imresize(word5, 40 20);word61 = imresize(word6, 40 20);word71 = imresize(word7, 40 20);% subplot(2, 7, 8); imshow(word11); title(字符1);% subplot(2, 7, 9); imshow(word21); title(字符2);% subplot(2, 7, 10); imshow(word31); title(字符3);% subplot(2, 7, 11); imshow(word41); title(字符4);% subplot(2, 7, 12); imshow(word51); title(字符5);% subplot(2, 7, 13); imshow(word61); title(字符6);% subplot(2, 7, 14); imshow(word71); title(字符7);% 赋值操作words.word1 = word11;words.word2 = word21;words.word3 = word31;words.word4 = word41;words.word5 = word51;words.word6 = word61;words.word7 = word71;if flag_display figure; subplot(2, 7, 1); imshow(word1); title(字符1, FontWeight, Bold); subplot(2, 7, 2); imshow(word2); title(字符2, FontWeight, Bold); subplot(2, 7, 3); imshow(word3); title(字符3, FontWeight, Bold); subplot(2, 7, 4); imshow(word4); title(字符4, FontWeight, Bold); subplot(2, 7, 5); imshow(word5); title(字符5, FontWeight, Bold); subplot(2, 7, 6); imshow(word6); title(字符6, FontWeight, Bold); subplot(2, 7, 7); imshow(word7); title(字符7, FontWeight, Bold); subplot(2, 7, 8); imshow(word11); title(字符1, FontWeight, Bold); subplot(2, 7, 9); imshow(word21); title(字符2, FontWeight, Bold); subplot(2, 7, 10); imshow(word31); title(字符3, FontWeight, Bold); subplot(2, 7, 11); imshow(word41); title(字符4, FontWeight, Bold); subplot(2, 7, 12); imshow(word51); title(字符5, FontWeight, Bold); subplot(2, 7, 13); imshow(word61); title(字符6, FontWeight, Bold); subplot(2, 7, 14); imshow(word71); title(字符7, FontWeight, Bold);endfunction mask = Mask_Process(Img, id)% 图像蒙版处理函数% 输入参数:% Img图像矩阵% id图像序号% 输出参数:% mask模板图像% 如果已经存在模板图像则不再取模板filename = sprintf(maskmask%d.jpg, id);if exist(filename, file) mask = imread(filename); if isa(mask, logical) mask = im2bw(mask); end sz = size(Img); if isequal(sz(1:2), size(mask) mask = imresize(mask, sz(1:2); mask = logical(mask); end return;endI = Img;Ptn = ;figure;subplot(1, 3, 1); imshow(I);title(取点_左键取点,右键退出, Color, r, . FontWeight, Bold);hold on;set(gcf, units, normalized, position, 0 0 1 1);x, y, button = ginput(1); % 点击while button = 1 plot(x, y, r+, LineWidth, 2); % 绘制节点 Ptn = Ptn; x y; % 存储节点 x, y, button = ginput(1); % 点击endif size(Ptn, 1) 2 return;endPtn = Ptn; Ptn(1, :);plot(Ptn(:, 1), Ptn(:, 2), ro-, LineWidth, 2, MarkerFaceColor, k);title(原图像, Color, k, . FontWeight, Bold);mask = Get_PointSplineMask(I, Ptn); % 获取蒙板图像subplot(1, 3, 2); imshow(mask);title(蒙板图像, Color, k, . FontWeight, Bold);if ndims(I) = 3 I1 = I .* uint8(cat(3, mask, mask, mask);else if isequal(size(I), size(mask) mask = imresize(mask, size(I); mask = logical(mask); end I1 = I .* mask;endsubplot(1, 3, 3); imshow(I1);title(蒙板分割结果, Color, k, . FontWeight, Bold);imwrite(mask, filename);function str = Pattern_Recognition(words)% 车牌字符识别% 输入参数:% words车牌字符图像% 输出参数:% str识别结果pattern = ;dirpath = ./标准库/;%读取所有样本文件files = ls(dirpath *.jpg);for t = 1 : length(files) imagedata = imread(dirpath, files(t,:); %读取样本文件 imagedata = im2bw(imagedata, 0.5); pattern(t).feature = imagedata; end % 字符库列表chepaiword=. 沪 C E N 2 6 7 浙 B T 2 0 0 8 . 皖 N 6 9 3 3 5 皖 A M 3 7 6 7 . 沪 B 9 1 2 1 3 沪 F S 2 6 9 5 . 吉 A E 3 1 2 7 沪 B B 3 3 9 3 . 沪 J B 7 7 7 8 京 H Z 9 1 3 9 . 晋 K C 3 8 4 1 苏 D V 0 0 0 1 . 苏 A V 8 8 8 8 浙 B 8 8 8 8 8 . 沪 F Q 1 2 7 7 苏 E D 0 0 0 9 . 沪 E C 1 2 8 8 苏 G B 0 5 7 8 . 沪 B B 2 0 2 9 沪 D 5 4 2 2 6; for m = 1 : 7; for n = 1 : length(files); switch m case 1 distance(n)=sum(sum(abs(words.word1-pattern(n).feature); case 2 distance(n)=sum(sum(abs(words.word2-pattern(n).feature); case 3 distance(n)=sum(sum(abs(words.word3-pattern(n).feature); case 4 distance(n)=sum(sum(abs(words.word4-pattern(n).feature); case 5 distance(n)=sum(sum(abs(words.word5-pattern(n).feature); case 6 distance(n)=sum(sum(abs(words.word6-pattern(n).feature); case 7 distance(n)=sum(sum(abs(words.word7-pattern(n).feature); end end yvalue,xnumber=min(distance); filename = files(xnumber, :); pathstr, name, ext = fileparts(filename); result(m) = chepaiword(str2num(name);endstr = 识别结果为: result;msgbox(str, 车牌识别, modal); str = result;function result = Plate_Process(plate, id, flag)% 车牌区域处理% 输入参数:% plate车牌区域% id车牌序号% flag显示图像标记% 输出参数:% result结果图像if nargin 3 flag = 1;endif ndims(plate) = 3 plate1 = rgb2gray(plate);% figure(1)% imshow(plate1)else plate1 = plate;endIm = Image_Rotate(plate1, id);th = 0.85 0.50 0.85 0.70 0.30 . 0.40 0.65 0.45 0.45 0.65 . 0.51 0.80 0.40 0.75 0.60 . 0.55 0.40 0.40 0.76 0.72;bw = im2bw(Im, th(id); % 车牌区域二值化h = fspecial(average, 2); % 均值滤波模板bw1 = imfilter(bw, h, replicate); % 均值滤波% figure(1)% imshow(bw1)mask = Mask_Process(bw1, id); % 模板处理bw2 = bw1 .* mask; % 模板滤波result = bw2;if flag figure; subplot(2, 2, 1); imshow(plate); title(车牌区域图像, FontWeight, Bold); subplot(2, 2, 2); imshow(Im); title(车牌区域校正图像, FontWeight, Bold); subplot(2, 2, 3); imshow(bw1); title(车牌区域二值图像, FontWeight, Bold); subplot(2, 2, 4); imshow(bw2); title(滤波二值图像, FontWeight, Bold);endfunction Plate, bw, Loc = Pre_Process(Img, parm, flag)% 车牌图像预处理,提取车牌区域% 输入参数:% Img图像矩阵% parm参数向量% flag是否显示处理结果% 输出参数:% Plate分割结果if nargin 3 flag = 1;endif nargin 900 parm = 0.35 0.9 90 0.35 0.7 90 2; end if size(Img, 2) 700 & size(Img, 2) 500 & size(Img, 2) 700 parm = 0.5 0.54 50 0.6 0.7 50 3; end if size(Img, 2) 800 rate = 800/y; I = imresize(I, rate);endy, x, z = size(I); % y方向对应行、x方向对应列、z方向对应深度myI = double(I); % 数据类型转换bw1 = zeros(y, x);bw2 = zeros(y, x);Blue_y = zeros(y, 1);% 对每一个像素进行分析,统计满足条件的像素所在的行对应的个数for i = 1 : y for j = 1 : x rij = myI(i, j, 1)/(myI(i, j, 3)+eps); gij = myI(i, j, 2)/(myI(i, j, 3)+eps); bij = myI(i, j, 3); % 蓝色RGB的灰度范围 if (rij parm(1) & gij parm(3) . | (gij parm(1) & rij parm(3) Blue_y(i, 1) = Blue_y(i, 1) + 1; % 蓝色象素点统计 bw1(i, j) = 1; end endend% Y方向车牌区域确定temp, MaxY = max(Blue_y);Th = parm(7);% 向上追溯,直到车牌区域上边界PY1 = MaxY;while (Blue_y(PY1,1)Th) & (PY11) PY1 = PY1 - 1;end% 向下追溯,直到车牌区域下边界PY2 = MaxY;while (Blue_y(PY2,1)Th) & (PY2y) PY2 = PY2 + 1;end% 对车牌区域的修正PY1 = PY1 - 2;PY2 = PY2 + 2;if PY1 y PY2 = y;end% 得到车牌区域IY = I(PY1:PY2, :, :);% X 方向 % 进一步确定X方向的车牌区域Blue_x = zeros(1,x);for j = 1:x for i = PY1:PY2 rij = myI(i, j, 1)/(myI(i, j, 3)+eps); gij = myI(i, j, 2)/(myI(i, j, 3)+eps); bij = myI(i, j, 3); % 蓝色RGB的灰度范围 if (rij parm(4) & gij parm(6) . | (gij parm(4) & rij parm(6) Blue_x(1,j) = Blue_x(1,j) + 1; % 蓝色象素点统计 bw2(i, j) = 1; end endend% 想右追溯,直到找到车牌区域左边界PX1 = 1;while (Blue_x(1,PX1)Th) & (PX1x) PX1 = PX1 + 1;end% 想左追溯,直到找到车牌区域右边界PX2 = x;while (Blue_x(1,PX2)PX1) PX2 = PX2 - 1;end% 对车牌区域的修正PX1 = PX1 - 2;PX2 = PX2 + 2;if PX1 x PX2 = x;end% 得到车牌区域IX = I(:, PX1:PX2, :);% 分割车牌区域Plate = I(PY1:PY2, PX1:PX2, :);Loc.row = PY1 PY2;Loc.col = PX1 PX2;bw = bw1 + bw2;bw = logical(bw);bw(1:PY1, :) = 0;bw(PY2:end, :) = 0;bw(:, 1:PX1) = 0;bw(:, PX2:end) = 0;if flag figure; subplot(2, 2, 3); imshow(IY); title(行过滤结果, FontWeight, Bold); subplot(2, 2, 1); imshow(IX); title(列过滤结果, FontWeight, Bold); subplot(2, 2, 2); imshow(I); title(原图像, FontWeight, Bold); subplot(2, 2, 4); imshow(Plate); title(分割结果, FontWeight, Bold);endfunction e = Segmation(d)% 车牌图像切割% 输入参数:% d车牌图像% 输出参数:% e切割后的车牌图像m, n = size(d);% 初始化参数top = 1; % 矩形框上参数bottom = m; % 矩形框下参数left = 1; % 矩形框左参数right = n; % 矩形框右参数 % 寻找矩形框上参数while sum(d(top,:)=0 & top=1 bottom = bottom - 1;end% 寻找矩形框左参数while sum(d(:,left)=0 & left=1 right = right - 1;enddd = right - left; % 矩形框长hh = bottom - top
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生态旅游项目单包建筑工程施工合同
- 2025年标准砖新型城镇化建设专项采购合同
- 2025版公路桥梁施工安全保密协议书汇编
- 2025年度建筑工程居间合同协议书(新型城镇化)
- 2025版文化创意产业项目投标标前合作合同
- 2025年金融产品代理推广合同
- 2025版机器人设计制作合同范本模板
- 2025版电子商务平台提前终止合作协议书
- 2025版顺丰快递快递服务质量考核合同
- 2025版电信企业员工试用期劳动合同参考模板
- 中国哲学经典著作导读知到章节答案智慧树2023年西安交通大学
- 2023年泰州市高级教师职称考试试题
- 业余足球比赛技术统计表
- 社情民意写作基本知识要点课件
- 医疗器械生产企业GMP培训专家讲座
- 2023年中远海运船员管理有限公司招聘笔试题库及答案解析
- 辐射及其安全防护(共38张PPT)
- 金风15兆瓦机组变流部分培训课件
- 膀胱镜检查记录
- 沈阳终止解除劳动合同证明书(三联)
- 化工装置静设备基本知识
评论
0/150
提交评论