




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数y ax bx c图象和性质 第22章 22 2 5二次函数的图象与性质 5 一般地 抛物线y a x h k与y ax的相同 不同 2 2 知识回顾 形状 位置 y ax 2 y a x h k 2 上加下减 左加右减 知识回顾 抛物线y a x h k有如下特点 1 当a 0时 开口 当a 0时 开口 向上 向下 2 对称轴是 3 顶点坐标是 直线X h h k 探究 如何画出的图象呢 我们知道 像y a x h 2 k这样的函数 容易确定相应抛物线的顶点为 h k 二次函数也能化成这样的形式吗 配方 y x 6 3 2 1 2 你知道是怎样配方的吗 1 提 提出二次项系数 2 配 括号内配成完全平方 3 化 化成顶点式 归纳 二次函数y x 6x 21图象的画法 1 化 化成顶点式 2 定 确定开口方向 对称轴 顶点坐标 3 画 列表 描点 连线 2 1 2 求次函数y ax bx c的对称轴和顶点坐标 函数y ax bx c的顶点是 配方 提取二次项系数 配方 加上再减去一次项系数绝对值一半的平方 整理 前三项化为平方形式 后两项合并同类项 化简 去掉中括号 这个结果通常称为求顶点坐标公式 函数y ax bx c的对称轴 顶点坐标是什么 1 写出下列函数的开口方向 对称轴 顶点坐标 函数y ax bx c的对称轴 顶点坐标是什么 对于y ax2 bx c我们可以确定它的开口方向 求出它的对称轴 顶点坐标 与y轴的交点坐标 与x轴的交点坐标 有交点时 这样就可以画出它的大致图象 方法归纳 二次函数y ax2 bx c a 0 的图象和性质 顶点坐标与对称轴 位置与开口方向 增减性与最值 抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值 y ax2 bx c a 0 y ax2 bx c a 0 由a b和c的符号确定 由a b和c的符号确定 向上 向下 在对称轴的左侧 y随着x的增大而减小 在对称轴的右侧 y随着x的增大而增大 在对称轴的左侧 y随着x的增大而增大 在对称轴的右侧 y随着x的增大而减小 根据图形填表 总结提高 填写表格 1 相同点 1 形状相同 图像都是抛物线 开口方向相同 2 都是轴对称图形 3 都有最 大或小 值 4 a 0时 开口向上 在对称轴左侧 y都随x的增大而减小 在对称轴右侧 y都随x的增大而增大 a 0时 开口向下 在对称轴左侧 y都随x的增大而增大 在对称轴右侧 y都随x的增大而减小 驶向胜利的彼岸 回味无穷 二次函数y ax2 bx c a 0 与 ax 的关系 2 不同点 1 位置不同 2 顶点不同 分别是和 0 0 3 对称轴不同 分别是和y轴 4 最值不同 分别是和0 3 联系 y a x h k a 0 的图象可以看成y ax 的图象先沿x轴整体左 右 平移 个单位 当 0时 向右平移 当0时向上平移 当 0时 向下平移 得到的 驶向胜利的彼岸 回味无穷 二次函数y ax2 bx c a 0 与 ax 的关系 课堂作业 课本41页
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乔灌木搭配种植技术方案
- 电梯智能监控与运行状态预警方案
- 冷链集配中心人员专业培训实施方
- PEP五年级英语下册口语表达计划
- 生态护岸建设技术应用案
- 手术室护理应急预案及器械管理流程
- 2025年中考英语节日主题预测及范文
- 校园文化建设中德育工作思路及措施
- 施工现场信息共享协调措施
- 船舶修造工程监理服务方案及质量保证措施
- 新麻醉记录单
- 社区合理用药讲课
- 义务教育科学课程标准(2022年版)测试题及答案含课标解读
- 水运工程统一用表之一《浙江省港口工程统一用表》
- GB/T 13306-2011标牌
- GA 1800.6-2021电力系统治安反恐防范要求第6部分:核能发电企业
- FZ/T 13001-2013色织牛仔布
- 温医麻醉学专业英语专业英语考试参考
- 办公室主任竞聘报告课件
- 住宅小区供配电系统设计课件
- “三高”讲座-课件
评论
0/150
提交评论