电机与拖动基础复习(2014).doc_第1页
电机与拖动基础复习(2014).doc_第2页
电机与拖动基础复习(2014).doc_第3页
电机与拖动基础复习(2014).doc_第4页
电机与拖动基础复习(2014).doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、直流电机原理1电枢反应:直流电机在主极建立了主磁场,当电枢绕组中通过电流时,产生电枢磁动势,也在气隙中建立起电枢磁场。这时电机的气隙中形成由主极磁场和电枢磁场共同作用的合成磁场。这种由电枢磁场引起主磁场畸变的现象称为电枢反应。换向器和电刷2 直流电机的励磁方式: 3直流电机的电枢电压方程和电动势:直流电机电磁转矩4直流电动机功率方程+ps5直流电机工作特性6自励发电方式能否建立空载电压是有三个条件(1)电机必须有剩磁,如果没有须事先进行充磁;(2)励磁绕组的极性必须正确,也就是励磁绕组与电枢并联时接线要正确;(3)励磁回路的电阻不能太大,即其伏安特性的斜率U/If 不能太陡,否则如果伏安特性的斜率太陡,与发电机空载特性交点很低或无交点,就无法建立空载电压。总之,自励发电机的运行首先要在空载阶段建立电压,然后才能带负载运行。 7他励直流发电机的外特性随着电流的增大,其输出电压下降。这是因为: 随着发电机的负载增加,其电枢反应的去磁效应增强,使每极磁通量减小,导致电枢电动势下降。 电枢回路电阻上的电压将随着电流上升而增大,使发电机的输出电压下降。8并励直流发电机的外特性随着电流的增大,其输出电压下降原因:1)电枢反应去磁作用;2)电枢回路上的电阻压降使端电压下降;3)上述两原因使端电压下降,引起励磁电流减小,端电压进一步下降。9效率他励直流发电机带负载运行时,其损耗中仅电枢回路的铜耗与电流 Ia 的平方成正比,称为可变损耗;其他部分损耗与电枢电流无关,称为不变损耗。当负载较小时,Ia 也较小,此时发电机的损耗是以不变损耗为主,但因输出功率小而效率低;随着负载增加,P2增大而效率上升,当可变损耗与不变损耗相等时效率达到最大值。二、直流电机拖动1电力拖动运动方程的实用形式为 由电动机的电磁转矩Te与生产机械的负载转矩TL的关系: 1)当Te = TL 时, dn/dt = 0,表示电动机以恒定转速旋转或静止不动,电力拖动系统的这种运动状态被称为静态或稳态; 2)若Te TL 时, dn/dt 0,系统处于加速状态; 3)若TeTL 时, dn/dt 0,系统处于减速状态。 也就是一旦 dn/dt 0 ,则转速将发生变化,我们把这种运动状态称为动态或过渡状态。2生产机械的负载转矩特性:3拖动系统稳定运行的充分必要条件: Te=TL且4他励直流电动机的机械特性5人为机械特性(1)改变电枢电压 (2)减小每极气隙磁通特性曲线倾斜度增加,电动机的转速较原来有所提高,整个特性曲线均在固有机械特性之上(3)电枢回路串接电阻n0=Const ;R越大,曲线越倾斜6 他励直流电动机的起动起动瞬间转速n=0,电动势Ea=Cen=0,最初起动电流。若直接起动,由于Ra很小,Ist会达到十几倍 甚至几十倍的额定电流,造成电机无法换向,同时也会过热,因此不能直接起动。一般直流电动机拖动负载顺利起动的条件是: 1)限制Ist(Ist l IN, l 为电机的过载倍数); 2) Tst (1.11.2)TN ; 3) 起动设备简单、可靠。方法:(1)电枢回路串电阻起动(2)减压起动7 他励直他励直流电动机的调速调速范围、静差率、平滑性(1)串电阻调速(2) 调电压调速(3) 弱磁调速8他励直流电动机的制动常用的电气制动方法有能耗制动、反接制动、回馈制动三种。 (1)能耗制动A 能耗制动过程B能耗制动运行状态(2)反接制动A电枢反接制动B 倒拉反接制动特点:电网输入电功率和由负载的位能自轴上输入转换而来的电磁功率,均消耗在电枢回路的电阻上,能量损耗大。(3)回馈制动A 正向回馈制动在调压调速系统中,电压降低的幅度稍大时,会出现电动机经过第二象限的减速过程电动车下坡时,将出现正向回馈制动运行B 反向回馈制动运行9他励直流电动机的四象限运行三、变压器1变压器的基本原理与结构变压器的主要组成是铁心和绕组2 变压器的额定参数 额定电压U1N 和U2N 额定电流I1N 和I2N 额定容量 SN 单相变压器 三相变压器 3 一次、二次绕组感应电动势4 变压器负载时的基本方程式和等效电路5绕组折算和“T”型等效电路将变压器二次绕组折算到一次绕组时,电动势和电压的折算值等于实际值乘以电压比k,电流的折算值等于实际值除以k,而电阻、漏电抗及阻抗的折算值等于实际值乘以 k2。这样,二次绕组经过折算后,变压器的基本方程式变为 分析变压器内部的电磁关系可采用三种方法:基本方程式、等效电路和相量图。6 变压器带负载时的相量图7 变压器的参数测定(1) 空载试验调压器TC加上工频的正弦交流电源,调节调压器的输出电压使其等于额定电压U1N ,然后测量U1 、I0 、U20 及空载损耗P0 由于空载电流 I0 很小,绕组损耗 I02R 很小,所以认为变压器空载时的输入功率P0 完全用来平衡变压器的铁心损耗,即 P0 pFe 。励磁阻抗 励磁电阻励磁电抗 电压比(2) 短路试验短路试验时, 用调压器TC 使一次侧电流从零升到额定电流 I1N,分别测量其短路电压 Uk 、短路电流 Ik 和短路损耗Pk ,并记录试验时的室温()。由于短路试验时外加电压很低,主磁通很小, 所以铁耗和励磁电流均可忽略不计,这时输入的功率(短路损耗)Pk 可认为完全消耗在绕组的电阻损耗上,即 P k pCu 。由简化等效电路,根据测量结果,取 Ik I1N 时的数据计算室温下的短路参数。短路阻抗 短路电阻短路电抗8变压器的效率特性变压器的总损耗为短路损耗(铜损耗)Pk 空载损耗 P0 变压器效率的实用计算公式当可变损耗与不变损耗相等时,效率达最大值10 三相变压器绕组的联结法判别11三相变压器的并联运行并联运行需要满足下列三个条件: 1)并联运行的各台变压器的额定电压应相等,即各台变压器的电压比应相等;2)并联运行的各台变压器的联结组号必须相同;3)并联运行的各台变压器的短路阻抗(或阻抗电压)的相对值要相等。四、异步电机原理1 单相电枢绕组的磁动势、三相绕组合成磁动势单相绕组通正弦交流电后,在空间产生的磁动势幅值随电流的幅值变化,而电流随时间按正弦规律变化,所以是时间的函数。该磁动势幅值在空间的分布与绕组的放置有关,所以是空间的函数。单相绕组基波磁动势是一个在空间按余弦规律分布,其幅值的位置固定、大小随时间按正弦规律变化的脉动磁动势,脉动频率与电源频率相同;三相绕组合成磁动势是一个沿空间按正弦分布、幅值恒定不变的圆形旋转磁动势,其幅值为单相脉振磁动势最大幅值的3/2倍,转向由电流的相序决定,即由电流超前相向电流滞后相旋转,转速为同步转速。2 旋转磁场的基本特点(1)三相对称绕组通入三相对称电流所产生的三相基波合成磁动势是一个旋转行波; (2)旋转磁场的旋转方向是从电流超前的相转向电流滞后的相,改变三相绕组的相序即可改变旋转磁场的方向; (3)旋转磁场的转速ns与电源频率f1、电机极对数p之间保持严格的关系,即 3异步电动机的转差率:4异步电动机的电磁关系f2=sf1转子旋转磁势,定子旋转磁势的转速5三相异步电动机单相等效电路6相量图虚拟电阻的损耗,实质上表征了异步电动机总的机械功率7异步电动机的功率9异步电动机的电磁转矩与每极磁通和转子电流有功分量的乘积成正比10. 转矩平衡方程11 异步电动机的工作特性 l 异步电动机的转速特性为一条稍向下倾斜的曲线l 随着负载的增大,转子转速下降,转子电流增大,定子电流及磁动势也随之增大,抵消转子电流产生的磁动势,以保持磁动势的平衡。定子电流几乎随 P2 按正比例增加。l 当负载增加时,转子电流的有功分量增加,定子电流的有功分量也随之增加,即可使功率因数提高。在接近额定负载时,功率因数达到最大。l 异步电动机的负载不超过额定值时,角速度w 变化很小。而空载转矩T0 又可认为基本上不变,所以电磁转矩特性近似为一条斜率为 1/ w 的直线。l 异步电动机中的损耗也可分为不变损耗和可变损耗两部分。当输出功率P2 增加时,可变损耗增加较慢,所以效率上升很快。当可变损耗等于不变损耗时异步电动机的效率达到最大值。随着负载继续增加,可变损耗增加很快,效率就要降低。五、交流电机拖动1 机械特性的三种表达式(1)物理表达式(2)参数表达式(3)实用表达式最大电磁转矩与电压的平方成正比,与漏电抗成反比;临界转差率与转子电阻成正比,与电压大小无关。 异步电动机机械特性的三种表达式,其应用场合各有不同。一般物理表达式适用于定性地分析 Te 与 及 间的关系;参数表达式多用于分析各参数变化对电动机运行性能的影响;实用表达式最适用于进行机械特性的工程计算。2 机械特性。机械特性的直线部分他机械特性的曲线部分 起动转矩稳定运行问题:(1)降低定子端电压的人为机械特性特点:1)固有特性的同步转速不变。2)最大转矩随电压的降低而按二次方规律减小。)最大转矩对应的转差率保持不变(2)定子回路串三相对称电阻的人为机械特性定子回路串入电阻并不影响同步转速,但是最大电磁转矩、起动转矩和临界转差率都随着定子回路电阻值的增大而减小。(3)定子回路串三相对称电抗的人为机械特性(4)转子回路串三相对称电阻的人为机械特性特点:()同步转速n1、最大电磁转矩Tmax不变。 ()临界转差率sm增大。()起动转矩增大3 异步电动机的起动起动要求:()足够大的起动转矩。起动电流倍数KI=Ist / IN()不要太大的起动电流。起动转矩倍数KT=Tst /TN。l 普通的异步电动机 如果不采取任何措施 而直接接入电网起动时,往往起动电流Ist 很大,而起动转矩Tst 不足。在起动初始,n = 0,转差率s = 1,转子电流的频率f2=sf1 50Hz ,转子绕组的电动势sE20=E20,比正常运行时(s = 0.010.05)的电动势值大20倍,则此时转子电流I2很大,定子电流的负载分量也随之急剧增大,使得定子电流(即起动电流)很大;转子漏磁sX20R2,使得转子内的功率因数cos2很小,所以尽管起动时转子电流I2 很大,但其有功分量I2cos2并不大。而且,由于起动电流很大,定子绕组的漏阻抗压降增大,使得感应电势E2s和与之成正比的主磁通Fm减小,因此起动转矩Tst并不大。异步电动机在起动时存在以下两种矛盾:1)起动电流大,而电网承受冲击电流的能力有限;2)起动转矩小,而负载又要求有足够的转矩才能起动。(1)小容量电动机的轻载起动直接起动直接起动也称为全压起动。(.5kW)优点:操作简便、起动设备简单;缺点:起动电流大,会引起电网电压波动。(2)中、大容量电动机轻载起动降压起动(A)星形-三角形(Y-)换接起动(B)自耦降压起动电动机端电压: Us=U2 = 定子电流:Is=I2= 从电网上吸取的电流:I1 =Ist起动转矩与起动电流降低同样的倍数。 (3)中、大容量电动机重载起动绕线转子异步电动机的起动起动的两种矛盾(起动转矩小,起动电流大)同时起作用。 如果上述特殊形式的笼型电动机还不能适应,则只能采用绕线转子异步电动机了。在绕线转子异步电动机的转子上串接电阻时,如果阻值选择合适,可以既增大起动转矩,又减小起动电流,两种矛盾都能得到解决。转子串接电阻起动方法在起动时,在转子绕组中串接适当的起动电阻,以减小起动电流,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论