GAN (v11)Special Structure (v6)李宏毅深度学习.ppt_第1页
GAN (v11)Special Structure (v6)李宏毅深度学习.ppt_第2页
GAN (v11)Special Structure (v6)李宏毅深度学习.ppt_第3页
GAN (v11)Special Structure (v6)李宏毅深度学习.ppt_第4页
GAN (v11)Special Structure (v6)李宏毅深度学习.ppt_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GenerativeAdversarialNetwork GAN RestrictedBoltzmannMachine http speech ee ntu edu tw tlkagk courses MLDS 2015 2 Lecture RBM 20 v2 ecm mp4 index htmlGibbsSampling http speech ee ntu edu tw tlkagk courses MLDS 2015 2 Lecture MRF 20 v2 ecm mp4 index html Outlook NIPS2016Tutorial GenerativeAdversarialNetworks Author IanGoodfellowPaper https arxiv org abs 1701 00160Video YoucanfindtipsfortrainingGANhere Review Generation Drawing WritingPoems Review Auto encoder Ascloseaspossible NNEncoder NNDecoder code NNDecoder code Randomlygenerateavectorascode Image Review Auto encoder 2D 1 5 1 5 1 50 NNDecoder 1 50 NNDecoder Review Auto encoder 1 5 1 5 NNEncoder NNDecoder code input output Auto encoder VAE NNEncoder input NNDecoder output 2 3 Fromanormaldistribution 3 1 2 X Minimizereconstructionerror 13 1 2 exp Minimize Auto EncodingVariationalBayes https arxiv org abs 1312 6114 ProblemsofVAE Itdoesnotreallytrytosimulaterealimages NNDecoder code Output Onepixeldifferencefromthetarget Onepixeldifferencefromthetarget Realistic Fake Theevolutionofgeneration NNGeneratorv1 Discri minatorv1 Realimages NNGeneratorv2 Discri minatorv2 NNGeneratorv3 Discri minatorv3 BinaryClassifier Theevolutionofgeneration NNGeneratorv1 Discri minatorv1 Realimages NNGeneratorv2 Discri minatorv2 NNGeneratorv3 Discri minatorv3 GAN Discriminator NNGeneratorv1 Realimages Discri minatorv1 image 1 0 realorfake SomethinglikeDecoderinVAE Randomlysampleavector 1 1 1 1 0 0 0 0 GAN Generator Discri minatorv1 NNGeneratorv1 Randomlysampleavector 0 13 Updatingtheparametersofgenerator Theoutputbeclassifiedas real ascloseto1aspossible Generator Discriminator anetwork Usinggradientdescenttoupdatetheparametersinthegenerator butfixthediscriminator 1 0 v2 GAN 二次元人物頭像鍊成 Sourceofimages DCGAN GAN 二次元人物頭像鍊成 100rounds GAN 二次元人物頭像鍊成 1000rounds GAN 二次元人物頭像鍊成 2000rounds GAN 二次元人物頭像鍊成 5000rounds GAN 二次元人物頭像鍊成 10 000rounds GAN 二次元人物頭像鍊成 20 000rounds GAN 二次元人物頭像鍊成 50 000rounds BasicIdeaofGAN MaximumLikelihoodEstimation Givenadatadistribution Wehaveadistribution parameterizedby E g isaGaussianMixtureModel aremeansandvariancesoftheGaussiansWewanttofind suchthat closeto Sample 1 2 from Wecancompute Likelihoodofgeneratingthesamples 1 Find maximizingthelikelihood MaximumLikelihoodEstimation max 1 max 1 max 1 max max min 1 2 from Howtohaveaverygeneral Now isaNN Itisdifficulttocomputethelikelihood BasicIdeaofGAN GeneratorGGisafunction inputz outputxGivenapriordistributionPprior z aprobabilitydistributionPG x isdefinedbyfunctionGDiscriminatorDDisafunction inputx outputscalarEvaluatethe difference betweenPG x andPdata x ThereisafunctionV G D min max Hardtolearnbymaximumlikelihood BasicIdea 1 2 3 1 2 3 1 GivenageneratorG max evaluatethe difference between and PicktheGdefining mostsimilarto min max max GivenG whatistheoptimalD maximizingGivenx theoptimalD maximizing 1 1 1 1 min max AssumethatD x canhaveanyvaluehere max Givenx theoptimalD maximizingFindD maximizing f a 1 1 f 1 11 1 0 1 11 1 min max a D b D 0 1 max 1 2 3 min max 1 1 2 2 1 1 difference between 1and max max 2 2 12 12 2 12 2 2 max 2log2 KLPdatax Pdatax PGx2 2 2 2 Jensen Shannondivergence 2 2 2 2 KLPGx Pdatax PGx2 max Intheend GeneratorG DiscriminatorDLookingforG suchthatGivenG max WhatistheoptimalG 2 2 2 0 log2 min max Algorithm TofindthebestGminimizingthelossfunction max 1 2 3 1 2 3 1 2 3 If isthemaxone min max definesG Algorithm Given 0Find 0 maximizing 0 0 Obtain 1Find 1 maximizing 1 1 Obtain 2 0 0 istheJSdivergencebetween and 0 1 1 istheJSdivergencebetween and 1 DecreaseJSdivergence DecreaseJSdivergence Algorithm Given 0Find 0 maximizing 0 0 Obtain 1 0 0 istheJSdivergencebetween and 0 DecreaseJSdivergence 0 0 1 0 0 0 1 0 smaller 1 1 Assume 0 1 Don tupdateGtoomuch Inpractice GivenG howtocomputemax Sample 1 2 from sample 1 2 fromgenerator 1 1 1 1 1 Maximize MinimizeCross entropy BinaryClassifier OutputisD x 1 2 from 1 2 from Disabinaryclassifier canbedeep withparameters Positiveexamples Negativeexamples Minimize 1 1 1 1 1 MinimizeCross entropy BinaryClassifier Outputisf x Ineachtrainingiteration Samplemexamples 1 2 fromdatadistribution Samplemnoisesamples 1 2 fromtheprior Obtaininggenerateddata 1 2 Updatediscriminatorparameters tomaximize 1 1 1 1 1 Sampleanothermnoisesamples 1 2 fromtheprior Updategeneratorparameters tominimize 1 1 1 1 1 Algorithm Repeatktimes LearningD LearningG Initialize forDand forG max Canonlyfindlowerfoundof OnlyOnce ObjectiveFunctionforGeneratorinRealImplementation Realimplementation labelxfromPGaspositive 1 1 Slowatthebeginning Demo Thecodeusedindemofrom IssueaboutEvaluatingtheDivergence EvaluatingJSdivergence MartinArjovsky L onBottou TowardsPrincipledMethodsforTrainingGenerativeAdversarialNetworks 2017 arXivpreprint EvaluatingJSdivergence JSdivergenceestimatedbydiscriminatortellinglittleinformation https arxiv org abs 1701 07875 WeakGenerator StrongGenerator Discriminator max 2 2 2 Reason1 Approximatebysampling 1 1 0 0 1 1 1 1 1 log2 Weakenyourdiscriminator CanweakdiscriminatorcomputeJSdivergence Discriminator max 2 2 2 Reason2 thenatureofdata 1 1 0 0 1 1 1 1 1 log2 Both and arelow dimmanifoldinhigh dimspace Usuallytheydonothaveanyoverlap Evaluation Better Evaluation 0 50 1 2 2 2 100 2 0 Notreallybetter AddNoise AddsomeartificialnoisetotheinputsofdiscriminatorMakethelabelsnoisyforthediscriminator and havesomeoverlap Discriminatorcannotperfectlyseparaterealandgenerateddata Noisesdecayovertime ModeCollapse ModeCollapse DataDistribution GeneratedDistribution ModeCollapse Whatwewant Inreality FlawinOptimization Maximumlikelihood minimizeKL ModifiedfromIanGoodfellow stutorial MinimizeKL reverseKL Reverse Thismaynotbethereason basedonIanGoodfellow stutorial SomanyGANs ConditionalGAN Motivation Generator ScottReed ZeynepAkata XinchenYan LajanugenLogeswaran BerntSchiele HonglakLee GenerativeAdversarialText to ImageSynthesis ICML2016 Text Image ScottReed ZeynepAkata SantoshMohan SamuelTenka BerntSchiele HonglakLee LearningWhatandWheretoDraw NIPS2016 HanZhang TaoXu HongshengLi ShaotingZhang XiaoleiHuang XiaogangWang DimitrisMetaxas StackGAN TexttoPhoto realisticImageSynthesiswithStackedGenerativeAdversarialNetworks arXivprepring 2016 Motivation Challenge NN Text Image apoint notadistribution

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论