高等数学教学大纲.doc_第1页
高等数学教学大纲.doc_第2页
高等数学教学大纲.doc_第3页
高等数学教学大纲.doc_第4页
高等数学教学大纲.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等数学教学大纲高等数学A物理计算机类专业一、说明(一)课程性质高等数学A是非数学理工科本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。它内容丰富,学时较多,既要为理工类专业后继课程提供基本的数学工具,为学生进一步学好其它数学奠定基础;又具有培养学生应用数学知识解决本专业实际问题的意识与能力的任务,因此可以说高等数学是基础中的基础。本大纲适应物理类、计算机类专业2006级学生,在大学一年级开设开课单位:数理与信息科学学院数学系(二)教学目的及要求通过本课程的学习,要使学生获得:函数、极限、连续、一元函数微积分学及其应用,常微分方程,向量代数与空间解极几何,多元函数微积分学及其应用,无穷级数等方面的基本概念、基本理论和基本运算技能。通过各个教学环节逐步培养学生以下几方面的能力:比较熟练的基本运算能力、综合运用所学知识分析和解决实际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。使学生在掌握数学知识的同时,尽量多地理解数学思想、明晰数学方法、建立数学思维。为学习后继课程和进一步获取数学知识奠定必要的数学基础。(三)教学内容1.函数与极限;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅立叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能。 (四)教学时数及学分总学时:180学时,分两学期授课,每学期各90学时;总学分:25学分=10学分 (五)教学方式(1)用“案例教学法”引入数学概念在微积分的教学过程中,对于极限、导数、微分、不定积分、定积分、微分方程、向量、偏导数、全微分、重积分、级数、极值与最值等重要数学概念都通过不同的实例引入,以增加学生的学习兴趣和学习动力,为学生利用所学知识解决类似的实际问题奠定基础。(2)用“讨论法”展开习题课的教学在高等数学习题课的教学过程中,提出问题,并引导大家讨论问题,不但可以达到释难解疑的目的,而且还能培养锻炼学生的表达能力,激发学生学习热情。(3)用“对比法”引入新的数学概念与运算在高等数学课程的教学过程中,根据教学内容的需要,适时采用对比法引入新的数学概念与运算。这样,有利于学生消化吸收新的数学概念与运算,达到事半功倍的教学效果。(4)适时地利用直观性教学原则处理抽象的数学概念在高等数学课程的教学过程中,适时地利用直观性教学原则处理抽象的数学概念是非常重要的. 直观性教学法不但可以帮助学生理解抽象的数学概念,而且还可以帮助学生记忆,培养学生形象思维能力。(5)高等数学教学内容的系统性和严谨性是必要的,但在教学上不能过分形式化。在讲授传统内容时,应注意运用现代数学的观点、概念、方法以及术语等符号,加强与其它不同分支之间的相互渗透,不同内容之间的相互联系。淡化运算技巧训练。二、本文高等数学A (一)一 函数、极限、连续(16学时)教学要点: 集合的概念,函数的概念与运算性质、函数作图,几类特殊函数;函数的几何特性;极限的概念及其性质、计算;无穷小的比较;函数的连续与间断;初等函数的连续性,闭区间上连续函数的性质及其应用。教学内容:1)函数的概念及函数的奇偶性、单调性、周期性和有界性。2)复合函数和反函数的概念。3)基本初等函数的性质及其图形。4)建立简单实际问题中的函数关系式。5)极限的概念(对极限的-N、-定义可在学习过程中逐步加深理解,对于给出求N或不作过高的要求。),极限四则运算法则及换元法则。 6)极限存在的夹逼准则,了解单调有界准则,会用两个重要极限求极限。7)无穷小、无穷大以及无穷小的阶的概念。等价无穷小求极限。8)函数在一点连续和在一个区间上连续的概念,间断点的概念,判别间断点的类型。9)初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。二 一元函数微分学(28学时)教学要点: 导数和微分的概念,导数的四则运算及其复合运算,初等函数的导数计算,一阶微分形式不变性;五个微分中值定理;洛必达(LHospital)法则,用导数判断函数的单调性、极值与最值、凹凸性与拐点、曲率;函数作图。教学内容:1)导数和微分的概念,导数的几何意义及函数的可导性与连续性之间的关系。用导数描述一些物理量。2)导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。3)高阶导数的概念与计算。4)初等函数一阶、二阶导数的求法。5)隐函数和参数式所确定的函数的一阶、二阶导数;反函数的导数。6)罗尔(Rolle)定理和拉格朗日(Lagrange)定理,柯西(Cauchy)定理和泰勒(Taylor)定理。7)洛必达(LHospital)法则求不定式的极限。8)函数的极值概念,用导数判断函数的单调性和求极值的方法。较简单的最大值和最小值的应用问题。9)用导数判断函数图形的凹凸性,拐点,函数的图形(包括水平和铅直渐进线)。10)有向弧与弧微分的概念。曲率和曲率半径的概念并会计算曲率和曲率半径。11)求方程近似解的二分法和切线法。三 一元函数积分学(30学时)教学要点: 原函数与不定积分的概念及性质,不定积分的基本公式、换元法和分部积分法。定积分的概念及性质,可积条件,牛顿(Newton)-莱布尼兹(Leibniz)公式与定积分的计算。定积分的物理应用与几何应用。教学内容:1)原函数与不定积分的概念及性质。 不定积分的基本公式、换元法和分部积分法。2) 定积分的概念及性质,可积条件。有理函数的积分。3) 变上限的积分作为其上限的函数及其求导定理,牛顿(Newton)-莱布尼兹(Leibniz)公式。4) 定积分的换元法和分部积分法。5) 广义积分的概念以及广义积分的换元法和分部积分法。6) 定积分的近似计算法(矩形法、梯形法和抛物线法)。7) 用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法。四 向量代数与空间解析几何(16学时)教学要点:向量的概念及其表,向量的运算;平面的方程和直线的方程及其求法,曲面方程。教学内容:1)空间直角坐标系。2)向量的概念及其表示,向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。3)单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。4)平面的方程和直线的方程及其求法,利用平面、直线的相互关系解决有关问题。5)曲面方程的概念, 常用二次曲面的方程及其图形, 以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。6) 空间曲线的参数方程和一般方程。7) 曲面的交线在坐标平面上的投影。高等数学A (二)五 多元函数微分学(18学时)教学要点:多元函数的概念,极限与连续性的概念;偏导数和全微分的概念及其与连续的关系,计算;链式法则;高阶导数;隐函数的导数,微分法的几何应用;多云函数极值的概念及其计算。教学内容:1)多元函数的概念。2)二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。3)偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,了解一阶全微分形式的不变性。4)方向导数与梯度的概念及其计算方法。5)复合函数一阶偏导数的求法, 复合函数的二阶偏导数。6)隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。7)曲线的切线和法平面及曲面的切平面与法线 方程的求法。8)多元函数极值和条件极值的概念, 二元函数的极值。 条件极值的拉格朗日乘数法, 一些较简单的最大值和最小值的应用问题。六 多元函数积分学(32学时)教学要点:二重积分、三重积分的概念及其性质;二重积分、三重积分的计算;曲线积分与曲面积分的概念、性质与计算;格林(Green)公式、高斯(Guass)、斯托克斯(Stokes)公式。各类积分的几何应用与物理应用。教学内容:1)二重积分、三重积分的概念, 重积分的性质。2)二重积分的计算方法(直角坐标、极坐标), 三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。3)两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。4)会计算两类曲线积分。5)格林(Green)公式,平面曲线积分与路径无关的条件。6)两类曲面积分的概念及高斯(Guass)、斯托克斯(Stokes)公式并会计算两类曲面积分。7)散度、旋度的计算公式。8)重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等)。七 无穷级数(22学时)教学要点: 无穷级数收敛、发散以及和的概念,无穷级数基本性质;正项级数的审敛法;条件收敛与绝对收敛的概念及其判别;幂级数的概念与性质、和函数的性质;初等函数的幂级数展开;近似计算;付利叶级数的概念、性质,函数的三角级数展开。教学内容:1)无穷级数收敛、发散以及和的概念,无穷级数基本性质及收敛的必要条件。2)几何级数和p-级数的收敛性。3)正项级数的比较审敛法,正项级数的比值审敛法。4)交错级数的莱布尼兹定理,交错级数的截断误差的估计。5)无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。6)函数项级数的收敛域及和函数的概念。7)比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。8)幂级数在其收敛区间内的一些基本性质。9)函数展开为泰勒级数的充分必要条件。10)和的马克劳林(Maclaurin)展开式,一些简单函数的幂级数展开。11)幂级数在近似计算上的简单应用。12)函数展开为傅里叶(Fourier)级数的狄利克雷(Dirichlet)条件,定义在和上函数的傅里叶级展开,定义在上函数展开为正弦或余弦级数。八 常微分方程(18学时)教学要点: 微分方程、解、阶、通解、初始条件和特解等概念,一阶微分方程的求解;二阶线性微分方程解的结构,二阶常系数齐次线性微分方程的通解与特解的求解。应用。教学内容:1)微分方程、解、阶、通解、初始条件和特解等概念。 2)变量可分离的方程及一阶线性方程的解法。齐次方程和伯努利(Bernoulli)方程,用变量代换求方程的思想。3)解全微分方程。4)用降阶法解下列方程:。5)二阶线性微分方程解的结构。6)二阶常系数齐次线性微分方程的解法,高阶常系数齐次线性微分方程的解法。7)自由项形如、二阶常系数非齐次线性微分方程的特解。8)微分方程解一些简单的几何和物理问题。三、参考教材1、高等数学(第五版)上、下册,同济大学应用数学系主编,高等教育出版社2、微积分上、下册,同济大学应用数学系编,高等教育出版社3、工科数学分析基础上、下册,马知恩 王绵森主编,高等教育出版社4、数学分析上、下册,复旦大学陈传璋等编,高等教育出版社5、高等数学例题与习题同济大学高等数学教研室编,同济大学出版社线 性 代 数物理计算机类专业一、说明(一)课程性质线性代数在高等理工科类各专业的教学计划中是一门必修的基础理论课,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。本大纲适应物理类、计算机类专业2006级学生,在大学一年级第一学期开设开课单位:数理与信息科学学院数学系(二)教学目的及要求通过教学,使学生掌握该课程的理论与方法,培养解决实际问题的能力,并为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。(三)教学内容1、行列式;2、矩阵;3、向量;4、线性方程组;5、矩阵的特征值与特征向量;6、二次型.(四)教学时数及学分学时:54学时,学分:3分。(五)教学方式讲授与讨论相结合,同时注重基本理论和实际问题的密切结合二、本文一 行列式(8学时)教学要点:二阶、三阶行列式的概念与计算,n阶行列式的概念与性质、展开定理,克来姆法则教学内容:1) 行列式的概念,行列式的定义与性质。2) 应用行列式的性质和行列式的展开定理计算行列式。3) 克来姆法则。4) 应用克来姆法则解二、三元线性方程组。重点:利用性质、展开法则计算行列式 难点:计算行列式二 矩阵(8学时)教学要点:矩阵的概念、性质、运算,几种特殊的矩阵,逆矩阵,矩阵的秩,矩阵的初等变换教学内容:1) 矩阵概念,单位矩阵、对角阵、对称阵等性质;2) 矩阵的线性运算、乘法、转置及其运算规律;3) 逆阵的概念,逆矩阵存在的条件与矩阵求逆的方法;4) 矩阵的初等变换,满秩矩阵定义和性质,矩阵秩的概念及其求法,分块矩阵及其运算。重点:矩阵与矩阵的乘法、逆矩阵存在的条件及其求法、矩阵的秩。 三 向量(10学时)教学要点: 向量的概念及其相关运算;线性相关、线性无关,向量组的最大无关组和向量组的秩。n维向量空间、子空间、基底,维数与坐标等概念教学内容:1) n维向量的概念,向量组线性相关、线性无关的定义,向量组线性相关、线性无关的重要结论;2) 向量组的最大无关组与向量组秩的概念,3) n维向量空间、子空间、基底,维数与坐标等概念重点:线性相关、线性无关,向量组的最大无关组和向量组的秩。难点:线性相关、线性无关,向量组的最大无关组和向量组的秩。 四 线性方程组(8学时)教学要点: 线性方程组的概念、解的解构,基础解系、通解与特解。教学内容:1) 齐次线性方程组有非零解的充要条件及齐次线性方程组有解的充要条件。2) 齐次线性方程组的基础解系通解等概念及解的结构。3) 用行初等变换求线性方程组通解的方法。 重点:掌握求解方程组解的方法、齐次线性方程组有非零解的充要条件及基础解系、非齐次线性方程组有解的充要条件。 五 矩阵的特征值与特征向量(10学时)教学要点: 矩阵的特征值与特征向量的概念及其求法,矩阵对角化的充要条件,向量组正交化。教学内容:1) 矩阵的特征值与特征向量的概念及其求法。2) 相似矩阵的概念和性质及矩阵对角化的充要条件,实对称矩阵的相似对角阵。3) 线性无关的向量组正交规范化的方法。4) 正交变换与正交矩阵的概念和性质。重点:矩阵的特征值、特征向量及其求法,矩阵对角化及其求法。难点:矩阵对角化及其求法。 六 二次型(10学时) 教学要点:二次型及矩阵表示;化二次型为标准形,二次型的正定性及其判别法。教学内容:1) 二次型及矩阵表示,正交变换法化二次型为标准形;2) 惯性定理、二次型的秩和二次型的正定性及其判别法。 重点:利用正交变换把二次型化为标准型。 难点:利用正交变换把二次型化为标准型。三、参考教材线性代数同济大学数学教研室 线性代数(第三版)同济大学出版社 线性代数 金一明 中国物资出版社 线性代数同济大学数学教研室 线性代数(第四版)高等教育出版社高等数学B生化专业一、说明(一)课程性质高等数学B是理工科本科对数学要求较低的专业(如生化专业)的一门必修的基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。它内容丰富,学时较多,既要为理工类专业后继课程提供基本的数学工具,为学生进一步学好其它数学奠定基础;又具有培养学生应用数学知识解决本专业实际问题的意识与能力的任务,因此可以说高等数学是基础中的基础。本大纲适应生化学院各专业2006级学生,在大学一年级开设开课单位:数理与信息科学学院数学系(二)教学目的及要求通过本课程的学习,要使学生获得:函数、极限、连续、一元函数微积分学及其应用,常微分方程,向量代数与空间解极几何,多元函数微积分学及其应用等方面的基本概念、基本理论和基本运算技能。通过各个教学环节逐步培养学生以下几方面的能力:比较熟练的基本运算能力、综合运用所学知识分析和解决实际问题的能力、数学建模及使用计算机求解数学模型的能力、初步抽象概括问题的能力、自主学习的能力以及一定的逻辑推理能力。使学生在掌握数学知识的同时,尽量多地理解数学思想、明晰数学方法、建立数学思维。为学习后继课程和进一步获取数学知识奠定必要的数学基础。(三)教学内容1.函数与极限;2.一元函数微积分学;3.常微分方程4.向量代数和空间解析几何; 5.多元函数微积分学等方面的基本概念、基本理论和基本运算技能。 (四)教学时数及学分总学时: 108学时,分两学期授课,总学分:6学分;部分专业72学时在第一学期开设,总学分: 4学分。(五)教学方式以讲授为主。在微积分的教学过程中,对于极限、导数、微分、不定积分、定积分、微分方程、向量、偏导数、全微分、重积分、级数、极值与最值等重要数学概念都通过不同的实例引入,以增加学生的学习兴趣和学习动力,为学生利用所学知识解决类似的实际问题奠定基础。高等数学教学内容的系统性和严谨性是必要的,但在教学上不能过分形式化。在讲授传统内容时,应注意运用现代数学的观点、概念、方法以及术语等符号,加强与其它不同分支之间的相互渗透,不同内容之间的相互联系。淡化运算技巧训练。二、本文一 函数、极限、连续(15学时)教学要点: 集合的概念,函数的概念与运算性质、函数作图,几类特殊函数;函数的几何特性;极限的概念及其性质、计算;无穷小的比较;函数的连续与间断;初等函数的连续性,闭区间上连续函数的性质及其应用。教学内容:1)函数的概念及函数的奇偶性、单调性、周期性和有界性。2)复合函数和反函数的概念。3)基本初等函数的性质及其图形。4)建立简单实际问题中的函数关系式。5)极限的概念(对极限的-N、-定义可在学习过程中逐步加深理解,对于给出求N或不作过高的要求。),极限四则运算法则及换元法则。 6)极限存在的夹逼准则,了解单调有界准则,会用两个重要极限求极限。7)无穷小、无穷大以及无穷小的阶的概念。等价无穷小求极限。8)函数在一点连续和在一个区间上连续的概念,间断点的概念,判别间断点的类型。9)初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。 二 一元函数微分学(21学时)教学要点: 导数和微分的概念,导数的四则运算及其复合运算,初等函数的导数计算,一阶微分形式不变性;五个微分中值定理;洛必达(LHospital)法则,用导数判断函数的单调性、极值与最值、凹凸性与拐点、曲率;函数作图。教学内容:1)导数和微分的概念,导数的几何意义及函数的可导性与连续性之间的关系。用导数描述一些物理量。2)导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。3)高阶导数的概念与计算。4)初等函数一阶、二阶导数的求法。5)隐函数和参数式所确定的函数的一阶、二阶导数;反函数的导数。6)罗尔(Rolle)定理和拉格朗日(Lagrange)定理,柯西(Cauchy)定理和泰勒(Taylor)定理。7)洛必达(LHospital)法则求不定式的极限。8)函数的极值概念,用导数判断函数的单调性和求极值的方法。较简单的最大值和最小值的应用问题。9)用导数判断函数图形的凹凸性,会求拐点,函数图形的描绘(包括水平和铅直渐进线)。10)有向弧与弧微分的概念。曲率和曲率半径的概念,曲率和曲率半径。11)方程近似解的二分法和切线法。三 一元函数积分学(24学时)教学要点: 原函数与不定积分的概念及性质,不定积分的基本公式、换元法和分部积分法。定积分的概念及性质,可积条件,牛顿(Newton)-莱布尼兹(Leibniz)公式与定积分的计算。定积分的物理应用与几何应用。教学内容:1)原函数与不定积分的概念及性质。 不定积分的基本公式、换元法和分部积分法。2) 定积分的概念及性质,了解可积条件。会求简单的有理函数的积分。3) 变上限的积分作为其上限的函数及其求导定理,牛顿(Newton)-莱布尼兹(Leibniz)公式。4) 定积分的换元法和分部积分法。5) 广义积分的概念以及广义积分的换元法和分部积分法。6) 定积分的近似计算法(矩形法、梯形法和抛物线法)。7) 用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法。四 常微分方程(14学时)教学要点: 微分方程、解、阶、通解、初始条件和特解等概念,一阶微分方程的求解;二阶线性微分方程解的结构,二阶常系数齐次线性微分方程的通解与特解的求解。应用。教学内容:1)微分方程、解、阶、通解、初始条件和特解等概念。 2)变量可分离的方程及一阶线性方程的解法。齐次方程和伯努利(Bernoulli)方程,用变量代换求方程的思想。3)解全微分方程。4)用降阶法解下列方程:。5)二阶线性微分方程解的结构。6)二阶常系数齐次线性微分方程的解法,高阶常系数齐次线性微分方程的解法。7)自由项形如、二阶常系数非齐次线性微分方程的特解。8)微分方程解一些简单的几何和物理问题。五 向量代数与空间解析几何(12学时)教学要点:向量的概念及其表,向量的运算;平面的方程和直线的方程及其求法,曲面方程。教学内容:1)空间直角坐标系。2)向量的概念及其表示,向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。3)单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。4)平面的方程和直线的方程及其求法,利用平面、直线的相互关系解决有关问题。5)曲面方程的概念, 常用二次曲面的方程及其图形, 以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。6) 空间曲线的参数方程和一般方程。7) 曲面的交线在坐标平面上的投影。六 多元函数微分学(12学时)教学要点:多元函数的概念,极限与连续性的概念;偏导数和全微分的概念及其与连续的关系,计算;链式法则;高阶导数;隐函数的导数,微分法的几何应用;多云函数极值的概念及其计算。教学内容:1)多元函数的概念。2)二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。3)偏导数和全微分的概念,了解全微分存在的必要条件和充分条件,了解一阶全微分形式的不变性。4)方向导数与梯度的概念及其计算方法。5)复合函数一阶偏导数的求法, 复合函数的二阶偏导数。6)隐函数(包括由两个方程组成的方程组确定的隐函数)的偏导数。7)曲线的切线和法平面及曲面的切平面与法线 方程的求法。8)多元函数极值和条件极值的概念, 二元函数的极值。 条件极值的拉格朗日乘数法, 一些较简单的最大值和最小值的应用问题。 七 多元函数积分学(10学时)教学要点:二重积分、三重积分的概念及其性质;二重积分、三重积分的计算;重积分的几何应用与物理应用。教学内容:1)二重积分、三重积分的概念, 重积分的性质。2)二重积分的计算方法(直角坐标、极坐标), 三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。3)利用重积分求一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量、引力、功等)。三、参考教材1高等数学(少学时类型)上、下册,同济大学应用数学系编 高等教育出版社2.高等数学释疑解难,工科数学课程教学指导委员会编 高教出版社3.高等数学例题与习题,同济大学数学教研组主编 同济出版社 概率论与数理统计一、说明 (一)课程性质概率论与数理统计非数学专业理工类本科生开设的,制订大纲的原则是使具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习更深的理论打下基础。 (二)教学目的和要求通过本课程的学习,使学生较好地掌握概率特有的分析概念,并在一定程度上掌握概率论认识问题、解决问题的方法,对数理统计基本概念和结果有一定的了解,并能运用其手法解决实际生产中的简单课题。本大纲适用于本科专业的教学。概率论与数理统计是一门比较抽象的数学学科,在高等学校非数学理工科类各专业教学计划中是一门重要的基础理论课。通过本课程的教学,使学生掌握概率论与数理统计的基本概念,了解其基本理论和方法,从而使学生初步掌握基本思想和方法,培养学生运用概率论与数理统计方法分析和解决实际问题的能力。 (三)教学内容本课程介绍概率论的基本概念随机变量及其概率分布、二项分布、泊松分布及正态分布,随机向量及其分布,数理统计常用的几个分布,数理统计的基本概念,统计推断,应用简介等内容。 重点:详尽讲解基本概念和基本方法。难点:概率论特有的思考方法是该课的难点,讲解时尽可能将主要概念的产生背景及概念之间的内在联系加以介绍(例如为什么要研究随机理论,数理统计在实际应用中的经济效益)并配合举一些说明问题的例子。 本课程涉及到微积分、代数、解析几何等知识,因而在开设本课程之前需为学生开设预备课程:数学分析、高等代数、解析几何。 (四)教学时数及学分 总学时:54学时 ;总学分:3学分。(五)教学方式 以讲授为主,在条件允许的情况下,可辅助于实验教学。在教学中应该注重对学科精神的领会;体现以人为本的教育理念;采用引导式教学模式,即在在传授知识的同时,开阔学生的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的良好习惯,从而激活学生的创新潜能、激发他们的创新欲望、增长他们的创新能力。二、本文一概率论的基本概念(8学时)教学要点: 本部分介绍随机试验、事件、概率及一些简单性质,古典概型,条件概率,事件的独立性,贝叶斯公式,全概率公式。教学内容:1) 概率论的研究对象。2)概率、基本事件、独立性等定义。3)概率的主要性质及运算规则。4)用贝叶斯公式、全概率公式进行证明与计算。重点、难点:概率的概念及运算,全概率公式,贝叶斯公式。二 随机变量及其分布(8学时)教学要点: 本部分介绍随机变量、离散分布、连续分布及分布函数等内容。教学内容:1)概率分布的类型(离散型、连续型)。2)随机变量的分布函数的定义、性质。3)随机变量函数的分布的求解。重点、难点:学会对不同类型的随机变量用适当的概率方式描述。三 多维随机变量及其分布(8学时)教学要点:本部分介绍二维随机变量的联合分布、边缘分布、条件分布等概念,随机变量独立性概念,及两个随机变量函数的分布的求解。教学内容:1) 二维随机变量的相关分布。)随机变量独立性概念。)解简单的两个随机变量函数的分布。 重点、难点:多维随机变量的描述方法、两个随机变量函数的分布的求解。四 随机变量的数字特征(10学时)教学要点:本部分介绍数学期望、方差、协方差、相关系数及矩的概念。教学内容:)各种数字特征的定义及运算性质。)几种重要的随机变量的期望及方差。重点、难点:各种数字特征的概念及算法。五 大数定律及中心极限定理(2学时)教学要点: 本部分介绍两个极限定理。教学内容:)大数定律及中心极限定理的主要内容。)用中心极限定理近似计算。重点、难点:理解依概率收敛的概念。六 样本及抽样分布(2学时) 教学要点:本部分介绍数理统计的基本概念几个常用分布。教学内容:)几个基本概念:总体、样本、样本特征及其数值计算。)2分布、t分布、F分布这三个常用分布。)几个常用的抽样分布。 重点、难点:抽样分布的概念。七 参数估计(8学时)教学要点:本部分介绍估计量及其好坏标准,求估计量的方法,置信区间等内容。教学内容:)参数估计的基本提法。)参数估计的两种方法:点估计法和区间估计法。重点、难点:矩估计法、极大似然估计法、置信区间及单侧置信区间。八 假设检验(8学时)教学要点:本部分介绍假设检验的基本内容。教学内容:)假设检验的原理:小概率事件原理。)最小二乘原理并会做一元线性回归。 重点、难点:方差分析及回归分析的原理及方法。三、参考教材1、概率论与数理统计浙江大学数学系盛骤等编著,高等教育出版社。2概率论与数理统计(第二版)华中科技大学数学系,高教出版社 3概率论与数理统计教程周概容著,高等教育出版社。4概率论基础及其应用王梓坤著,科学出版社。5、概率论与数理统计教程(第四版)沈恒范编,高等教育出版社,2003.6、概率论与数理统计学习辅导与习题全解华中科技大学数学系,高教出版社,2003.7、概率论与数理统计教程茆诗松等编著,高等教育出版社,2004.8、概率论与数理统计陈希孺编著,科学出版社,中国科学技术大学出版社,2000.9、概率论与数理统计教程 魏宗舒编,概高等教育出版社,1983.10、概率论基础及其应用 王梓坤编,高等教育出版社,1996. 微积分经济类专业一、说明(一)课程性质 微积分是经济与现代科学管理科学中的一种基本分析工具,是经济类专业本科生的数学基础课,是必修的重要理论基础课程。 本大纲从经济系经济类各专业2004级本科生开始执行,在大学一年级开设。 开课单位:数理与信息科学学院数学系(二)教学目标及要求 课程以极限理论为基础,研究微分和积分的理论和应用,也就是更深入地研究函数的连续性、可微性和可积性等问题。学习此课程的目的是获得微积分的基本概念、基本理论、基本方法和运算技能,培养学生抽象思维能力,提高学生数学思想和解决问题能力方面的基本素质,为今后学习各类后继课程和进一步扩大数学知识面奠定必要的数学基础。数学课是大学生入学后分量较重的一门课,本课程还应有这样的作用,使他们尽快地适应大学阶段的学习特点。(三)教学内容微积分课程要用两个学期,要求学生学习一元函数微积分(导数,不定积分与定积分的概念、计算),多元函数微积分(空间解析几何简介,偏导数与多重积分计算),无穷级数(数项级数的概念和审敛法;函数项级数的概念、求和函数和函数展开成幂级数),常微分方程和差分方程。以及它们在经济函数中的应用。这些应涵盖考研数学三中的微积分部分所要求的内容。(四)、课程总学时学分要求 总课时为136学时,总学分 7学分 。在大学一年级分两学期开设。微积分:64学时,3学分;微积分:72学时,4学分。(五)教学方式以讲授为主,在条件允许的情况下,可辅助于实验教学。在教学中应该注重对学科精神的领会;体现以人为本的教育理念;采用引导式教学模式,即在在传授知识的同时,开阔学生的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的良好习惯,从而激活学生的创新潜能、激发他们的创新欲望、增长他们的创新能力。二、本文 微积分一 函数(6课时)教学要点:预备知识, 函数概念,函数的几何特征,反函数,复合函数,初等函数,简单函数关系的建立。教学内容:1)实数与实数绝对值的概念,解简单绝对值不等式的方法。2) 函数、函数的定义域和值域等概念,函数的表示法。3) 函数的几何特性及其各几何特性的图形特征。4)反函数的概念;函数与其反函数的图形关系;简单函数的反函数。5)复合函数的概念;两个(或多个)函数能构成复合函数的条件;求简单函数复合运算的方法;将一个复合函数分解为较简单函数的方法。6)基本初等函数及其定义域、值域等概念;基本初等函数的基本性质。7)初等函数的概念;分段函数的概念。8)成本、收益、利润、需求、供给等经济函数及其性质;会建立简单应用问题的函数关系。注:本章内容带有复习性质,凡中学已经学过的有关函数的知识,只需加以总结,不必再作详细讲解。二 极限与连续(16学时)教学要点:数列极限;函数极限,函数极限的性质及运算法则,无穷大量与无穷小量;函数的连续性,闭区间上连续函数的性质教学内容:1)数列、数列的收敛和发散、数列极限等概念;数列极限的四则运算性质和夹逼定理;单调数列、有界数列的概念;收敛数列的简单性质和数列的极限。(数列极限的分析定义以及与之相关的性质证明不作要求)2)函数的极限过程概念;函数在某一过程下的收敛、发散、极限等概念;单侧极限的概念;利用函数的图形认识函数极限;利用函数值的变化趋势认识函数极限。3)函数极限的局部有界性和保号性;函数极限的夹逼定理、四则运算法则和复合函数的极限;利用四则运算和变量替换求极限的方法。(函数极限的分析定义以及与之相关的性质证明不作要求)4)无穷小量和无穷大量的概念和基本性质;无穷小量阶的比较以及常见的等价无穷小量;无穷小量与无穷大量之间的关系;等价无穷小量在求极限中的应用。5) 函数连续、左连续、右连续以及函数间断的概念;函数间断点的分类。6)函数在连续点的局部性质、四则运算性质;复合函数的连续性,初等函数在其定义区间内必连续的结论;函数的连续性在求函数极限中的应用。7) 函数的零点概念;闭区间上连续函数的性质及其应用。(闭区间上连续函数的性质不作证明,只介绍其应用)三 导数与微分(12学时)教学要点:导数概念,导数运算与导数公式,复合函数求导法则,微分及其计算,高阶导数与高阶微分,导数与微分在经济学中的简单应用教学内容:1) 导数的概念;导数的几何意义与经济意义;函数在可导点的局部性质。2) 基本初等函数的导数公式。3) 导数的四则运算公式。4) 反函数的导数公式(反函数求导公式的证明不作要求)。5) 复合函数导数的链式法则(证明不作要求)。6) 对数求导法与隐函数求导法。7) 微分的概念;可导与可微的关系;求函数微分的方法和运算法则;微分在近似计算中的应用和一次微分的形式不变性。8) 高阶导数的概念和记号;求二阶、三阶导数及某些简单函数的n阶导数的方法;高阶微分的概念和记号。9) 边际与弹性的概念;边际收益和需求价格弹性之间的关系。四 中值定理与导数的应用(18学时)教学要点:微分中值定理;泰勒公式,洛必达法则;函数的单调性与凹凸性,函数的极值与最大(小)值,函数作图教学内容:1) 函数极值的定义;费马定理、罗尔定理、拉格朗日定理和柯西定理及其证明;这些定理的应用以及它们之间的关系2) 泰勒定理及其在求函数极限中的应用。3) 洛必达法则和各种未定式的定值方法。(只证明型不等式的洛必达法则,型未定式的洛必达法则的证明不作要求)4) 函数单调性和凹凸性的判别方法;曲线拐点;函数单调性和凹凸性的应用。5) 函数的极值与最值;函数极值与最值的关系与区别;某些简单经济应用问题中的极值。6) 简单函数的渐近线;函数作图的基本步骤和方法;某些简单函数的图形。五 不定积分(12学时)教学要点:原函数与不定积分的概念;基本积分公式;换元积分法;分部积分法。教学内容:1) 原函数与不定积分的概念,不定积分的基本性质。2) 基本积分表。3) 计算不定积分的二种换元积分法和分部积分法。4) 三种简单的分式的不定积分:,。微积分六 定积分(16学时)教学要点:定积分的概念与性质;微积分基本定理;定积分的换元积分法和分部积分法;定积分的应用 ;反常积分初步。教学内容:1) 定积分的概念和基本性质,积分中值定理。2) 牛顿莱布尼兹公式;变限积分的导数。3) 定积分的换元积分法和分部积分法。4) 求总量的微元法;利用定积分计算平面图形的面积和旋转体的体积;利用定积分求解一些简单的经济应用问题。5) 反常积分收敛与发散的概念;计算收敛的反常积分的方法;反常积分与的敛散性条件; 函数和函数的概念、基本性质以及递推公式。七 多元函数微积分学(24学时)教学要点:预备知识,多元函数的概念;方向导数、偏导数与全微分;多元复合函数与隐函数微分法;高阶偏导数与高阶全微分;多元函数的极值。教学内容:1)空间坐标系的有关概念,空间两点之间的距离;向量的概念和坐标表示;向量的平行和垂直的坐标表示;平面和空间中常见的二次曲面的方程;平面上点的邻域、区域及其边界、闭区域等概念。2)多元函数的概念;二元函数的定义与表示法。3)二元函数的极限与连续性的概念。4)二元函数的方向导数、偏导数、全微分的概念;多元函数的偏导数与全微分的概念;求偏导数与全微分的方法;函数的梯度概念。5)多元复合函数偏导数的链式法则;多元函数的一次微分形式不变性;隐函数的微分法。6)二元函数的高阶偏导数和高阶全微分的表示及其求法。7)二元函数极值与条件极值的概念;二元函数极值存在的必要条件与充分条件;二元函数的极值;用拉格朗日乘数法求简单二元函数的条件极值。8)二重积分的概念、几何意义与基本性质;在直角坐标系与极坐标系下计算二重积分的常用方法;一些简单的二重积分的计算;无界区域上的反常二重积分概念、记号。八 无穷级数(14学时)教学要点:常数项级数的概念和性质,正项级数,任意项级数,幂级数。教学内容:1)无穷级数及其一般项、部分和、收敛与发散,以及收敛级数的和等基本概念。2)几何级数与P级数的敛散性判别条件;调和级数的敛散性。3)级数收敛的必要条件,以及收敛级数的基本性质。4)正项级数的比较判别法、比值判别法、根值判别法,正项级数的积分判别法。5)交错级数的莱布尼兹判别法。6)任意项级数绝对收敛与条件收敛的概念;绝对收敛与条件收敛的判别方法。7)函数项级数的收敛点、收敛域、和函数等基本概念;幂级数的阿贝尔定理;幂级数的收敛点、收敛半径、收敛区间、收敛域、和函数概念;幂级数收敛半径、收敛区间的求法;幂级数收敛域的求法;幂级数在收敛区间内的连续性、逐项求导公式、逐项求积公式;幂级数在收敛区间内的性质求简单幂级数的和函数及简单数项级数的和。8)函数的泰勒级数、麦克劳林级数;基本初等函数的麦克劳林展开式;间接展开法求一些简单函数的幂级数展开式。九 微分方程初步(10学时)教学要点:微分方程的基本概念;一阶微分方程;二阶常系数线性微分方程;微分方程在经济学中的应用教学内容:1)微分方程的阶、通解与特解等概念。2)可分离变量方程、齐次方程和一阶线性微分方程的解法。3)二阶常系数齐次和非齐次线性微分方程解的结构;二阶常系数齐次线性微分方程的解法;二阶常系数非齐次线性微分方程特解和通解的求法。4)一些简单的经济应用题。十 差分方程(8学时)教学要点:差分方程的基本概念;一阶常系数线性差分方程;二阶常系数线性差分方程;差分方程在经济学中的简单应用。教学内容:1) 差分与差分方程,差分方程的阶与解(通解与特征)等概念。2) 一阶与二阶常系数齐次线性差分方程的解法。3) 某些特殊的一阶与二阶常系数非齐次线性差分方程的特解与通解。4) 一些简单经济应用题。三、教材与参考教材教材:微积分(第二版) 朱来义主编 高等教育出版社2004.3第二版参考书:高等数学(第五版)同济大学应用数学系主编 高等教育出版社2002年7月出版微积分与数学模型贾晓峰主编 高等教育出版社微积分学习与考试指导赵树螈 胡显佑 陆启良 中国人民大学出版社经济数学基础教材辅导(微积分) 北大数学科学学院 田勇 主编 双博士数学课题组 编写 机械工业出版社2002 微积分学习指导 韩云瑞 等编 清华大学出版社 微积分全程学习指导第二版 王丽燕 秦禹春 编著 大连理工大学出版社线 性 代 数经济类专业一、说明(一)课程性质本课程是高等经济类各专业的一门必修的基础理论课,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。本大纲适应经济类专业2006级学生,在大学一年级第一学期开设开课单位:数理与信息科学学院数学系(二)教学目的及要求通过教学,使学生掌握该课程的理论与方法,培养解决实际问题的能力,并为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。(三)教学内容1、矩阵;2、线性方程组;3、线性空间与线性变换4、矩阵的特征值与特征向量;5、二次型.(四)教学时数及学分学时:54学时,学分:3分。(五)教学方式讲授与讨论相结合,同时注重基本理论和实际问题的密切结合一 矩阵(16学时)教学要点: 矩阵的概念, 矩阵的运算,方阵的行列式,矩阵的分块,可逆矩阵,矩阵的初等变换,矩阵的秩,矩阵应用的两个例子 。教学内容:1) 矩阵的加法、乘法、数乘和转置的定义及其运算法则,矩阵的经济背景。2) 方阵的行列式定义,行列式的性质。3) 矩阵分块的概念;分块矩阵的运算及其运算法则。4) 可逆矩阵的概念及其性质,用伴随矩阵求矩阵的逆。5) 矩阵初等变换的概念及其与初等矩阵的关系,用行初等变换的方法求矩阵的逆。6) 矩阵的秩的概念。 二 线性方程组(20学时)教学要点:线性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论