高中数学学习方法指导.doc_第1页
高中数学学习方法指导.doc_第2页
高中数学学习方法指导.doc_第3页
高中数学学习方法指导.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学学习方法指导数学学习方法很多,有从过程上讲的学习方法,也有从教学内容上讲的学习方法,根据新课程新理念,我着重从学习的情感态度方法;思想上能力上与大家共同交流共同进步。一 数学学习情感态度数学已成为公民所必须具备的一种基本素质。数学在人类思维的过程中发挥着独特的、不可替代的作用。有人这样形容数学:“数学是思维的体操,智慧的火花”。数学使人聪明,严谨;我们需要数学,我们欣赏数学。但很多同学进入高中阶段,对数学学习很不适应,成绩下降,很重要的一点是不能很快改变旧的思维方法和学习方法,去适应新阶段的学习。大部分同学形成了固定的学习方法和学习习惯,他们上课注意听讲,尽力完成老师布置的作业。但课堂上仅仅满足于听,缺乏积极思维;遇到难题不是动脑子思考,而是希望老师讲解整个解题过程;不会科学地安排时间,缺乏自学的能力,还有人问有没有一种神奇的学习方法,让我们一看就懂,一学就会。大科学家爱因斯坦的两句话,给了很好的回答:w(成功)x(刻苦努力)y(方法正确)z(不说空话)。 “兴趣是最好的老师。”也就是说爱数学,是学好数学的前提条件。1)兴趣是最好的老师兴趣是能量的调节者,它的加入便发动了储蓄在内心的力量。据研究,如果一个学生对学习有兴趣,积极性高,就能发挥其全部才能的80%-90%;否则只能发挥20%-30%。兴趣能把精力集中到一点,其力量好比炸药,立即把障碍炸得干干净净。兴趣是获取高效率学习方法的关键。也就是说学习的感情、态度是影响学习最关键的因素。对其所学习的知识具有浓厚的兴趣,极大的热情,并有一种我必须学好或学会这些知识和技能的决心,那么他在这种心里的驱使下将会不分昼夜,锲而不舍,直到掌握这些知识和技能,使其心理得到满意为止。也使他的学习更有成效。 2)数学是重要的,必须面对的 可能有的同学会说:我可能对学习数学不十分感兴趣,而是由于无可奈何的原因去学习的,而我也不可能会为不感兴趣的东西去探索什么学习方法。其实这种态度是错误的。数学是一切科学之母、它是一门研究数与形的科学,它无处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。一个人在人生中肯定有他最感兴趣的东西。但是为了让自己过得满意,他必须将他一生中不感兴趣而又必须学习的东西尽快学会,尽可能高效的学会。这样他才会有更多时间从事感兴趣的事情。所以对不太感受兴趣的东西但又必须学习的东西,我们也应该去探索让人满意的方式和方法给予解决,以争取早日脱离苦海,尽快进入兴趣的海洋尽情遨游。 3)数学是有趣的,美丽的 激动人心的 数学是自然的,不要害怕,如果听懂一节课,掌握一种数学方法,解出一道数学难题,测验得到好成绩,平时老师对自己的鼓励与赞赏等,都能使自己从这些成功中体验到成功的喜悦,激发起更高的学习热情。因此,在平时学习中,要多体会、多总结,不断从成功(那怕是微不足道的成绩)中获得愉悦,从而激发学习的热情,提高学习的兴趣。数学是美的,有趣的,激动人心的。要被数学本身的魅力所吸引;就如美味佳肴,凭它的色香味,使人油然升起强烈的向往。这才是学好数学的正道。 二 数学学习的科学理念与方法1理解 2参与 3 探究 4总结1理解-学好数学的关键数学知识点不是孤立的,而是紧密联系的。互相联系在一起若干个数学知识点称为数学知识结构。数学学习就是在自己的头脑中不断建构和完善的数学知识结构的过程。数学学习的过程本质上讲就是理解数学知识及其联系的过程。理解是数学学习的核心。数学学习一定要把理解放在第一位,千方百计提高理解的层次。 有这样一种现象,有些同学表现在上课都听懂,作业不会做;或即使做出来,老师批改后才知道有多处错误,这种现象被戏称为“一听就懂,一看就会,一做就错”。其实质就是对知识的一知半解。是表面孤立和肤浅的理解,是一种夹生饭。那么怎样才算真正的理解呢?1)数学知识的理解要深入本质,注意抓住知识之间的联系字面上的理解仅是第一层次,还必须弄清它和它以外事物的关联,本质上融会贯通。从系统的角度去分析认识它们了。如对数学概念要理解其形成过程,表示方法(文字语言,符号语言,图形语言)要熟悉。重要的是理解它与其它概念的区别和联系。2)了解知识产生的背景和作用 通过知识的产生背景,理解知识的形成过程,掌握知识来龙去脉;培养观察思考抽象概括提高问题与解决问题能力,增强数学应用意识。例1:如函数的概念,认真理解符号f对应关系;可能是一个表达式,也可能是一个表格或图像;从熟悉的实例背景出发;如圆周长,其对应规律,周长是半径的2倍。珠海西区站数与票价关系是分段函数或表格式;气温与时间关系只能用列表或图象表示。通过实例,必须到抽象的概念符号。函数是什么?函数是两个变量间的对应规律。包含定义域,对应规律,值域三要素。f(x)中x表示自变量,f表示变量变化规律。f(x)=3x+5易求f(5),f(2m-1),fg(x)例2:联系的观点学概念理解概念:棱柱 棱锥 棱台三种图形,可从其中任意一种出发,运用动的思想,演出其它两种。例3:数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。要学习好数学,必须准确理解和掌握好基本概念、基本公式和基本性质,抓住这些基本知识的要点和适用范围,这是学好数学的基础之一,否则一切都无从谈起,从目前的高考看,也很侧重对这些基础知识的考查,特别是一些简答题,如果对某些基本概念不能准确理解则很难正确作答。2主动参与参与数学活动又分为被动参与主动参与两种形态。有的同学习惯于“以听为主,力求听懂”跟在老师后边亦步亦趋;虽然参与但力度有限思维的创造性受到限制,学习是被动的。而应该把老师讲解作为一个因素,独立思考,主动思考,创造性地进行思维。力求自己解决。这种强烈的自主意识调动了积极性,所获得的感悟要丰富得多,深刻得多。主动参与要做到几点。1)学会读数学书学会看目录:预习时先学目录和内容提要,了解知识的大致内容,然后再开始从头学习各个组成部分,并在学习过程中要求自己把书本读厚,读完后他以要求自己把书本读薄。厚使他对书本的各个部分有了详细的了解,薄使他对书本的整体和主旨有了更深刻的认识。课本从预习到复习至少要仔仔细细地看4-5遍,基础差的更要多看。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。强调几点例题要重读:教材中的例题,是学习如何运用概念定理公式最一般的示范。阅读时要作为重点。读时要边看边想边算,可先试着算算不出来,再看解答。这对提高解题能力大有益处。概念要精读:正确理解和使用概念,是学好数学的前提。阅读概念时一定要一字一句地仔细阅读,把每一个字、每一个词都要弄明白。精读的精字,可以从两层意思来理解:一是阅读的时候要精细,要非常认真仔细;二是总结的时候要精炼,不能啰嗦。力求把内容吃透。看书过程中应不断向自己发问,多想想为什么。加深对概念定理的理解。要点应巧读:所谓巧读,包括以下几层意思。第一,学会点、划、批、问。把关键的地方都“点”出来,把重点、公式和结论都“划”出来,把自己的理解、质疑和心得等用三言两语“批”出来,把没弄懂的地方都用问号“问”出来。第二,跳过障碍,先看下去。对一时看不懂的地方,不妨先跳过去,或许读过后来的叙述,前面不懂的也就懂了。第三,不同的书比较着看。某一处不太明白,不妨看看别的参考书是怎么说的。各种书的叙述语言有深有浅,叙述角度有正有反,有时这么对比着一看,往往也就明白了七八分。 2).学会上课-积极主动参与到课堂中来课堂上要做到三点:一要专心听讲:听能使注意力集中,把老师讲的关键性部分听懂、听会,听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地笔记,领会课上老师的主要精神与意图,知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法积极思考问题。弄清讲的内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 二 超前思维:一个概念要能从它的生活背景中提出来,自己能试着定义它,知道三种语言(文字语言符号或图形语言)表示方式,一个命题定理、公式性质写出来,先试着去证明,例题试着分析,尽量超在老师讲解前发现思路,做出结果解出它;学习过程中自己设想该得出什么结论了,下什么定义了。总之老师提问后,尽量超在老师讲解前想出解决问题的途径和方法让自己的思维走在老师的前面。这样的结果,名词,定理公式是自己定义推导出来的,自己概括数学概念、原理、法则等。身临其境,理解就相当深刻,掌握就牢固,保持高水平的数学思维活动,是在游泳中学习游泳。三学会提问:“提出一个问题往往比解决一个问题更重要。”因为解决一个问题,所应用的知识是前人总结的,所需要的技能也是前人积累的,在解决问题的过程中有很深的模仿痕迹。而提出新的问题,却需要有创造性,有想象力。在老师讲解前,发现问题如一题多解,提出问题的变式创新推广 ,培养学生的创新精神和实践能力。 总之:听课时要耳到、眼到、心到、口到、手到;动脑、动笔、动口,全身心地投入课堂学习,参与知识的形成过程,若能做到上述“五到”,精力高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。 3)学会记忆:记忆方法很多,年轻人要多记,只有记更多的知识,才会左右逢源,一呼百应,得心应手。如等差数列求和公式有部分同学到现在记不了,可类比梯形求面积的方法发现规律,简化记忆。例图形法如y=ax (a0,a1) ,a0,以1为分类界点,当a1时,函数呈上升状态,当a0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于( A )(高考题)A5,B10 ,C15,D20 综合法解:由已知推出未知选A数学不是靠老师教会的,而是在老师的引导下,靠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论