




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学解题中的“六化”思维策略探索作者 孙贤忠(湖南省,长沙市第七中学,邮编410003)【摘要】 读者在阅读,或在听老师讲书上的例题时候,都能听懂,但一遇到没有见过面的问题就不知从何处入手。如此一来,要提高解决问题的能力,要能在高中数学中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思维策略。善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略;极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多;从整体上来考察研究的对象,不纠缠于问题的各项具体的细节,从而能够拓宽思路,抓住主要矛盾,一举解决问题;如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决;对问题的特殊情况进行研究,一方面是因为研究特殊情况比研究一般情况较为容易;另一方面是因为特殊的情况含有一般性,所以对特殊情况的研究常能揭示问题的结论或启发解决问题的思路,它是探索问题的一种重要方法;有序化的假设,实际上是给题目增加了一个可供使用的条件。【关键字】简单化 极端化 整体化 逆向化 特殊化 有序化一、“以退为进的简单化”策略华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。从简单情况考虑,就是一种以退为进的一种解题策略。1、从简单情形入手首先考虑符合题意的最简单情形,以退为进找出这种情形的解法,然后再过渡到一般情形。例题1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。谁放入了最后一枚硬币谁获胜。问:先放的人有没有必定取胜的策略?分析与解:如果桌子大小只能容纳一枚硬币,那么先放的人当然能够取胜。然后设想桌面变大,注意到长方形有一个对称中心,先放者将第一枚硬币放在桌子的中心,继而把硬币放在后放者所放位置的对称位置上,这样进行下去,必然轮到先放者放最后一枚硬币。例题2.设m、n是任意实数,试在平面上找出所有这样的点,它位于方程x2+y2-2m-2ny+4(m-n-2)=0表示的曲线系中的每一曲线上。分析 显然,我们所要寻找的点就是曲线系中所有曲线的公共点,其坐标应满足曲线系的方程(不论m、n是什么实数)。既然如此,所求的点就应该在曲线系中的任一曲线上,于是,我们先以退为进考虑m1=n1=0和m2=0,n2=1两种简单情形,相应地得到曲线系中的两条曲线:c1 : x2+y2-8=0,c2 : x2y2-2y-12=0而所求的点必定是c1和c2的交点,将c1与c2的方程联立解得 x1=2 x2=-2y1=-2 y2=-2于是,一般情形(m、n为任意实数),就变成判别P(2,-2)、Q(-2,-2)是否为所寻找的点,代入原方程知,只有p点的坐标在不论m、n是什么实数时都满足方程,因此它位于曲线系中的每一条曲线上。例题3线段AB上有1998个点(包括A,B两点),将点A染成红色,点B染成蓝色,其余各点染成红色或蓝色。这时,图中共有1997条互不重叠的线段。问:两个端点颜色相异的小线段的条数是奇数还是偶数?为什么?分析与解:分析:从最简单的情况考虑:如果中间的1996个点全部染成红色,这时异色线段只有1条,是一个奇数。然后我们对这种染色方式进行调整:将某些红点改成蓝点并注意到颜色调整时,异色线段的条数随之有哪些变化。由于颜色的调整是任意的,因此与条件中染色的任意性就一致了。解:如果中间的1996个点全部染成红色,这时异色线段仅有1条,是一个奇数。将任意一个红点染成蓝色时,这个改变颜色的点的左右两侧相邻的两个点若同色,则异色小线段的条数或者增加2条(相邻的两个点同为红色),或者减少2条(相邻的两个点同为蓝色);这个改变颜色的点的左右两侧相邻的两个点若异色,则异色小线段的条数不变。综上所述,改变任意个点的颜色,异色线段的条数的改变总是一个偶数,从而异色线段的条数是一个奇数。例题4在66的正方形网格中,把部分小方格涂成红色。然后任意划掉3行和3列,使得剩下的小方格中至少有1个是红色的。那么,总共至少要涂红多少小方格?分析与解:先考虑每行每列都有一格涂红,比较方便的涂法是在一条对角线上涂6格红色的,如图1。任意划掉3行3列,可以设想划行划列的原则是:每次划掉红格的个数越多越好。对于图1,划掉3行去掉3个红格,还有3个红格恰在3列中,再划掉3列就不存在红格了。所以,必然有一些行有一些列要涂2个红格,为了尽可能地少涂红格,那么每涂一格红色的,一定要使多出一行同时也多出一列有两格红色的。先考虑有3行中有2格涂红,如图2。显然,同时也必然有3个列中也有2格涂红。这时,我们可以先划掉有2格红色的3行,还剩下3行,每行上只有一格涂红,每列上也只有一格涂红,那么在划掉带红格的3列就没有红格了。为了使得至少余下一个红格,只要再涂一格。此红格要使图中再增加一行和一列有两个红格的,如图3。结论是:至少需要涂红10个方格。2、将复杂问题分解为几个简单问题复杂的综合问题分解为几个简单问题复杂的综合问题,往往是由一些较简单的问题巧妙地揉合而成的,因此,要善于通过观察,将它分解成几个小问题,各个击破后再综合起来。例5 .设=10-5+a2-+1,求证:对于一切实数,都有0。分析 本题为多项求和,各项是同底幂,于是联想到指数涵数y=x的性质,以退为进用指数函数增减性来证题,但指数函数y=x的增减性与底数有关,因此,我们将问题分解成如下向种情况来讨论。 当0 当=0或1时, f(a)=10 当01时, y=x 为减函数,50; 当 1时,y=x为增函数,105,2,所以f(a)=(10-5)+(2-)+10.综合,对一切实数 都有f(a)0. 二、“走投无路的极端化”策略从问题的极端情况考虑,对于数值问题来说,就是指取它的最大或最小值;对于一个动点来说,指的是线段的端点,三角形的顶点等等。极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多。例题6新上任的宿舍管理员拿着20把钥匙去开20个房间的门,他知道每把钥匙只能打开其中的一个门,但不知道哪一把钥匙开哪一个门,现在要打开所有关闭的20个门,他最多要开多少次?分析与解:解:从最不利的极端情况考虑:打开第一个房间要20次,打开第二个房间需要19次共计最多要开2019181=210(次)。例题7有n名(n3)选手参加的一次乒乓球循环赛中,没有一个全胜的。问:是否能够找到三名选手A,B,C,使得A胜B,B胜C,C胜A?分析与解:解:从极端情况观察入手,设B是胜的次数最多的一个选手,但因B没获全胜,故必有选手A胜B。在败给B的选手中,一定有一个胜A的选手C,否则,A胜的次数就比B多一次了,这与B是胜的次数最多的矛盾。所以,一定能够找到三名选手A,B,C,使得A胜B,B胜C,C胜A。例题8n(n3)名乒乓球选手单打比赛若干场后,任意两个选手已赛过的对手恰好都不完全相同。试证明,总可以从中去掉一名选手,而使余下的选手中,任意两个选手已赛过的对手仍然都不完全相同。分析与解:证明:如果去掉选手H,能使余下的选手中,任意两个选手已赛过的对手仍然都不完全相同,那么我们称H为可去选手。我们的问题就是要证明存在可去选手。设A是已赛过对手最多的选手。若不存在可去选手,则A不是可去选手,故存在选手B和C,使当去掉A时,与B赛过的选手和与C赛过的选手相同。从而B和C不可能赛过,并且B和C中一定有一个(不妨设为B)与A赛过,而另一个(即C)未与A赛过。又因C不是可去选手,故存在选手D,E,其中D和C赛过,而E和C未赛过。显然,D不是A,也不是B,因为D与C赛过,所以D也与B赛过。又因为B和D赛过,所以B也与E赛过,但E未与C赛过,因而选手E只能是选手A。于是,与A赛过的对手数就是与E赛过的对手数,他比与D赛过的对手数少1,这与假设A是已赛过对手最多的选手矛盾。故一定存在可去选手。例题9在一个88的方格棋盘的方格中,填入从1到64这64个数。问:是否一定能够找到两个相邻的方格,它们中所填数的差大于4?分析与解:考虑这个方格棋盘的左上角、右上角及右下角内的数A,B,S。设存在一个填数方案,使任意相邻两格中的数的差不大于4,考虑最大和最小的两个数1和64的填法,为了使相邻数的差不大于4,最小数1和最大数的“距离”越大越好,即把它们填在对角的位置上(A=1,S=64)。然后,我们沿最上行和最右行来观察:因为相邻数不大于4,从 ABS共经过14格,所以 S1+414=57(每次都增加最大数4),与S=64矛盾。因而,1和64不能填在“最远”的位置上。显然,1和64如果填在其他任意位置,那么从1到64之间的距离更近了,更要导致如上的矛盾。因此,不存在相邻数之差都不大于4的情况,即不论怎样填数必有相邻两数的差大于4。解:我们考察表格中填入的所有数的和的奇偶性:第一次“操作”之前,它等于9,是一个奇数,每一次“操作”,要改变一行或一列四个方格的奇偶性,显然整个16格中所有数的和的奇偶性不变。但当每一格中所有数字都变成1时,整个16格中所有数的和是16,为一偶数。故不能通过若干次“操作”使得每一格中的数都变成1。三、“纵观全局的整体化”策略从整体上来考察研究的对象,不纠缠于问题的各项具体的细节,从而能够拓宽思路,抓住主要矛盾,一举解决问题。例题10有三堆石子,每堆分别有1998,998,98粒。现在对这三堆石子进行如下的“操作”:每次允许从每堆中各拿掉一个或相同个数的石子,或从任一堆中取出一些石子放入另一堆中。按上述方式进行“操作”,能否把这三堆石子都取光?如行,请设计一种取石子的方案;如不行,请说明理由。分析与解:解:要把三堆石子都取光是不可能的。按“操作”规则,每次拿掉的石子数的总和是3的倍数,即不改变石子总数被 3除时的余数。而1998+998+98=3094,被3除余1,三堆石子被取光时总和被3除余0。所以,三堆石子都被取光是办不到的。例题11我们将若干个数x,y,z,的最大值和最小值分别记为max(x,y,z,)和min(x,y,z,)。已知a+b+c+d+e+f+g=1,求minmax(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)分析与解:解:设 M=max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)。因为a+b+c,c+d+e,e+f+g都不大于M,所以例12. 实数x、y满足1,若xyk0恒成立,求k的范围。【分析】由已知条件1,可以发现它与ab1有相似之处,于是整体实施三角换元。【解】由1,设cos,sin,即: 代入不等式xyk0得:3cos4sink0,即k3cos4sin5sin(+) 所以k0)。 令x=4,得 = 2m (mN) =mN 但是当k0时, k1的另根)例22.已知求证: 分析 题设中有的三角函数,并有参数a、b、c。但题断中不含的三角函数,可见应设法消去,为此应先求出关于a、b、c的关系,再设法消去。证:由已知易得 由可见 代入,再化简即得 例23. 求函数的值域。解:由原函数式可得:解得:故所求函数的值域为 例24. 求函数的值域。解:由原函数式可得:,可化为:即即解得:故函数的值域为直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。例25 若不等式对满足的所有m都成立,求x的取值范围。解:对该不等式,一般是将x看成变量,这样就会使问题变得烦琐,但如果将m看成变量,原不等式可整理为关于m的一次不等式,问题转化为一次函数在区间上恒小于零。故问题等价于解不等式组,解之可得。评注:当方程或不等式中出现参数时,同学们往往以自变量为主元,有时易致使解题思路受阻,解题过程不畅。若将题中已知范围的参数与自变量“主、客转化”,问题就会变得简单。五、“纷繁复杂的特殊化”策略特殊化体现了以退求进的思想:从一般退到特殊,从复杂退到简单,从抽象退到具体,从整体退到部分,从较强的结论退到较弱的结论,从高维退到低维,退到保持特征的最简单情况、退到最小独立完全系的情况,先解决特殊性,再归纳、联想、发现一般性。华罗庚先生说,解题时先足够地退到我们最易看清楚问题的地方,认透了、钻深了,然后再上去。特殊化既是寻找解题方法的方法,又是直接解题的一种方法。对于一个一般性的问题,如果觉得难以入手,那么我们可以先考虑它的某些特殊情况,从而获得解决的途径,使问题得以“突破”,这种方法称为特殊化。对问题的特殊情况进行研究,一方面是因为研究特殊情况比研究一般情况较为容易;另一方面是因为特殊的情况含有一般性,所以对特殊情况的研究常能揭示问题的结论或启发解决问题的思路,它是探索问题的一种重要方法。运用特殊化方法进行探索的过程有两个步骤,即先由一般到特殊,再由特殊到一般。通过第一步骤得到的信息,还要回到一般情况予以解答。1、分析特例,寻求启示例26. 如图,设两圆o1 o2内切于A,其半径分别为R、r(Rr),任作一直线垂直于连心所在的直线,并使其在连心线同侧分别交o1、o2于B、C。求证:ABC外接圆的面积是定值。EBPEBACF2O1OEBPEBACF2O1O分析 对于这个问题,我们先在特殊位置来考察“定值”,连心线o1o2过A点,设它与o1、o2分别交于E、F,过F作FB/垂直于o1o2 ,此时,B、C的特殊位置为B/、F,AB/F是ABC的特殊位置,其外接圆的直径是AB/,显然AB/ 2=AEAF=4Rr是定值,从而面积也是定值,对于一般情形,连结EB、FC并延长交于P,因为ABP= ACP为直角,所以A、C、B、P四点共圆,从而AP是ABC外接圆直径,由特殊情形得到启示,只要证明AP2=AEAF即可,而这不难通过相似三角形来加以证明。例题27如下图,四边形ABCD和EFGH都是正方形,且边长均为2cm。又E点是正方形 ABCD的中心,求两个正方形公共部分(图中阴影部分)的面积S。分析与解:分析:我们先考虑正方形EFGH的特殊位置,即它的各边与正方形ABCD的各边对应平行的情况(见上图)。此时,显然有得出答案后,这个问题还得回到一般情况下去解决,解决的方法是将一般情况变成特殊情况。解:自E向AB和AD分别作垂线EN和EM(右图),则有S=SPME+S四边形AMEQ又SPME=SEQN,故S=SEQN+S四边形AMEQ =S正方形AMEN特殊化既是寻找解题方法的方法,又是直接解题的一种方法。例题28.已知恒等式 求实数,其中。解 对取特殊值,当时,有故有(1) (2)又取(即比较常数项系数),有 (3)比较的系数(考虑特殊位置),有(4)由得 代入(1),得代入原式左边,有 故知。也可以将的值代入(3)、(2)求,但要检验排除增根。2、利用特例,奠定基础从所周知,数学归纳法是用特例奠基的,有的题目虽然不用数学归纳法,但解题时可先讨论一种简单特例,然后把一般情形化归为特例,以退为进。例4 如图,设ABC的外心为0,垂心为H,BC求证;OM=1/2AH BCAAMOH分析 观察图形的各种情形,发现当O在AB边上时,证明最为简单,可以联想到把一般情形化为这种特殊情形来证明,为此,连结BO,并延长交圆周于A/ ,对A/BC而言,垂心H与C重合,显然有OM=A/C,再证AH=A/C即可,而这不难通过证明AHCA/是平行四边形而得到。例29. 已知函数的定义域为R求实数m的取值范围。分析:函数的定义域为R,表明,使一切xR都成立,由项的系数是m,所以应分m=0或进行讨论。解:当m=0时,函数的定义域为R;当时,是二次不等式,其对一切实数x都成立的充要条件是综上可知。评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。例30. 已知函数的定义域是R,求实数k的取值范围。解:要使函数有意义,则必须0恒成立,因为的定义域为R,即无实数当k0时,恒成立,解得;当k=0时,方程左边=30恒成立。综上k的取值范围是。有些题对其特例的推演,也恰是解题中的重要步骤,例31 证明:圆系x2+y2+2(1+sin2)x-2(1+sin2)y+(1+6sin2)=0经过定点,并求定点坐标。分析 既是定点,则应与参数无关,不妨取特例=0, 所得两圆之交点必为所求,为此,取=0 , ,所得两圆方程分别为 (x-1)2+(y-1)2=1, (x-2)2+(y-2)2=1易知它们的交点为P(-1,2)及Q(-2,1),将P、Q坐标代入圆系方程适合,即圆系过定点P和Q。例题32如右图,正方体的8个顶点处标注的数字为a,b,c,d,e,求(a+b+c+d)-(e+f+g+h)的值。分析与解:分析:从这8个数都相等的特殊情况入手,它们满足题目条件,从而得所求值为0。这就启发我们去说明a+b+c+d=e+f+g+h。解:由已知得3a=b+e+d,3b=a+c+f,3c=b+d+g,3d=a+c+h,推知3a+3b+3c+3d=2a+2b+2c+2d+e+f+g+h,a+b+c+d=e+f+g+h,(a+b+c+d)-(e+f+g+h)=0。例题33将n2个互不相等的数排成下表:a11 a12a13 a1na21 a22a23 a2nan1an2an3 ann先取每行的最大数,得到n个数,其中最小数为x;再取每列的最小数,也得到n个数,其中最大数为y。试比较x和y的大小。分析与解:分析:先讨论n=3的情况,任取两表:1 37123256456894789左上表中x=6,y=4;右上表中x=3,y=3。两个表都满足xy,所以可以猜想xy。解:设x是第i行第j列的数aij,y是第l行第m列的数alm。考虑x所在的行与y所在的列交叉的那个数,即第i行第m列的数aim。显然有aijaimalm,当i=l,j=m时等号成立,所以xy。六、“计数混乱的有序化”策略当我们研究的对象是一些数的时候,我们常常将这些数排一个次序,即将它们有序化。有序化的假设,实际上是给题目增加了一个可供使用的条件。例题34将10到40之间的质数填入下图的圆圈中,使得3组由“”所连的4个数的和相等,如果把和数相等的填法看做同一类填法,请说明一共有多少类填法?并画图表示你的填法。分析与解:解:10到40之间的8个质数是11,13,17,19,23,29,31,37。根据题目要求,除去最左边和最右边的2个质数之外,剩下的6个质数在同一行的2个质数的和应分别相等,等于这6个数中最小数(记为a)与最大数(记为b)之和a+b。根据a,b的大小可分为6种情况:当a=11,b=29时,无解;当a=11,b=31时,有11+31=13+29=19+23,得到如下填法:当a=11,b=37时,有11+37=17+31=19+29,得到如下填法:当a=13,b=31时,无解;当a=13, b=37时,无解;当a=17,b=37时,无解。所以,共有2类填法。例题35有四个互不相等的数,取其中两个数相加,可以得到六个和:24,28,30,32,34,38。求此四数。分析与解:解:设四个数为a,b,c,d,且abcd,则六个和为a+b,a+c,a+d,b+c,b+d,c+d,其中a+b最小,a+c次小,c+d最大,b+d次大,a+d与b+c位第三和第四。分别解这两个方程组,得例题36互不相等的12个自然数,它们均小于36。有人说,在这些自然数两两相减(大减小)所得到的差中,至少有3个相等。你认为这种说法对吗?为什么?分析与解:解:设这12个自然数从小到大依次为a1,a2,a3,a12,且它们两两相减最多只有2个差相等,那么差为1,2,3,4,5的都最多只有2个。从而a12-a11,a11-a10,a10-a9,a2-a1,这11个差之和至少为2(1+2+3+4+5)+6=36,但这11个差之和等于a12-a136。这一矛盾说明,两两相减的差中,至少有3个相等。例题37有8个重量各不相同的物品,每个物品的重量都是整克数且都不超过15克。小平想以最少的次数用天平称出其中最重的物品。他用了如下的测定法:(1)把8个物品分成2组,每组4个,比较这2组的轻重;(2)把以上2组中较重的4个再分成2组,即每组2个,再比较它们的轻重;(3)把以上2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑钢打孔施工方案(3篇)
- 施工方案自己写吗(3篇)
- 瑞安活动策划方案价格优化(3篇)
- 留守儿童踏春活动策划方案(3篇)
- 浙江电缆施工方案(3篇)
- 消防春节宣传活动方案策划(3篇)
- 有趣的儿歌教学课件
- 时间的秘密课件
- 长征初二作文800字长征作文800字10篇
- 早餐时间课件
- 读书分享读书交流会《人生海海》
- 人工智能在检验医学中的应用
- 基于保护创始人股东有限公司章程范本
- 郑州外国语中学初一新生分班(摸底)数学模拟考试(含答案)
- 人教版数学四年级上册教材课后习题参考答案(全)
- 人力资源员工旅游活动方案
- 外贸报价单英文模板excel报价单表格模板
- 夜间专项施工专项方案
- 糖尿病足病历讨论
- GB/T 20028-2005硫化橡胶或热塑性橡胶应用阿累尼乌斯图推算寿命和最高使用温度
- GB/T 13008-2010混流泵、轴流泵技术条件
评论
0/150
提交评论