




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲 直线方程知识归纳:一、 直线的倾斜角与斜率1、确定直线的几何要素是:直线上两不同的点或直线上一点和直线的方向两个相对独立的条件注意:表示直线方向的有:直线的倾斜角(斜率)、直线的方向向量、直线的法向量2、直线的倾斜角:当直线与轴相交时,我们取轴作为基准,轴正向与直线向上方向之间所成的角叫做直线的倾斜角。注意:从用运动变化的观点来看,直线的倾斜角是由x轴绕交点按逆时针方向转到与直线重合时所成的角;规定:直线与轴平行或重合时,直线的倾斜角为直线倾斜角的取值范围是: 在同一直角坐标系下,任何一条直线都有倾斜角且唯一,倾斜程度相同的直线,其倾斜角相等,倾斜程度不同的直线,其倾斜角不相等。3、直线的斜率:倾斜角不是的直线,它的倾斜角的正切值叫做这条直线的斜率,即。它从另一个方面反映了直线的倾斜程度。注意:一条直线必有一个确定的倾斜角,但不一定有斜率,当时,;当时,;当时,不存在,当时,。 即:斜率的取值范围为例1、给出下列命题:若直线倾斜角为,则直线斜率为;若直线倾斜角为,则直线的倾斜角为;直线的倾斜角越大,它的斜率越大;直线的斜率越大,其倾斜角越大;直线的倾斜角的正切值叫做直线的斜率。其中正确命题的序号为 例2、已知直线的倾斜角为,且,求直线的斜率4、直线斜率的坐标公式经过两点的直线的斜率公式:注意:斜率公式与两点的顺序无关,即特别地:当时,;此时直线平行于轴或与轴重合;当时,不存在,此时直线的倾斜角为,直线与轴平行或重合。例3、已知点,求直线的斜率并判断倾斜角的范围。例4、(三点共线问题)已知三点,证明这三点在同一条直线上例5、(最值问题)已知实数,满足,当时,求的最大值和最小值5、直线的方向向量:已知是直线上的两点,直线上的向量及与它平行的向量都称为直线的方向向量。直线与轴不垂直时,此时,向量也是直线的方向向量,且它的坐标是,即(1,k),其中k为直线的斜率6、直线的法向量:如果向量与直线垂直,则称向量为直线的法向量。二、直线的方程1、定义:一般地,以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上点的坐标都是这个方程的解,这是,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。2、直线方程的几种形式(1)点斜式:问题:若直线经过点,且斜率为k,求直线的方程。解析:设点是直线上不同于点的任意一点,根据经过两点的直线的斜率公式,得,可化为,即为过点、斜率为k的直线的方程。方程是由直线上一点及其斜率确定的,把这个方程叫做直线的点斜式的方程,简称点斜式。注意:与是不同的,前者表示直线上缺少一个点,后者才是整条直线;当直线的倾斜角为时,即,这时直线的方程为 当直线的倾斜角为时,直线斜率不存在,这时直线与轴平行或重合,它的方程不能用点斜式表示,它的方程是。即:局限性是不能表示垂直于轴的直线。经过点的直线有无数条,可分为两类情况:、斜率为k的直线,方程为 、斜率不存在的直线,方程为或写为例6、根据条件写出下列各题中的直线的方程经过点,倾斜角,经过点,斜率为2 经过点,且与轴平行经过点,且与轴垂直(2)斜截式:问题:已知直线的斜率是k,与轴的交点是,代入直线方程的点斜式,得直线的方程,也就是,我们称是直线在轴上的截距。 这个方程是由直线的斜率k和它在轴上的截距确定的,所以叫做直线的斜截式方程,简称斜截式。注意: 局限性:不表示垂直于轴的直线 斜截式方程和一次函数的解析式相同,都是,但有区别:当斜率不为0时,是一次函数,当时,不是一次函数;一次函数()必是一条直线的斜截式方程。例7、求倾斜角是直线的倾斜角的,且在轴上的截距为的直线的方程。(3)两点式:问题:已知直线经过两点,求直线的方程解析:因为直线经过两点,所以它的斜率,代入点斜式,得,当时,方程可以写成这个方程是由直线上两点确定的,所以叫做直线的两点式方程,简称两点式。注意:方程与方程比较,后者比前者表示直线的范围更小了,前者不能表示斜率不存在的直线,后者除此外,还不能表示斜率为0的直线;局限性:不能表示垂直于坐标轴的直线。两点式方程与这两个点的顺序无关。例8、已知点,求直线的方程例9、一条光线从点出发,经轴反射,通过点,求入射光线和反射光线所在直线的方程(4)截距式:问题:已知直线与轴的交点为,与轴的交点为,其中,求直线的方程。解析:因为直线经过和两点,将这两点的坐标代入两点式,得,即为如果直线与轴的交点为,则称为直线在轴上的截距。以上直线方程是由直线在轴和轴上的截距确定的,所以叫做直线的截距式方程,简称截距式注意:方程中,所以它不能表示与坐标轴平行(重合)的直线,还不能表示过原点的直线。例10、过两点,的直线在轴上的截距为 (5)一般式方程:以上几种形式的直线方程都是二元一次方程,即平面上任何一条直线都可以用一个关于的二元一次方程表示;而关于的二元一次方程,它都表示一条直线。因此我们把的二元一次方程(其中A,B不同时为0)叫做直线的一般式方程,简称一般式。注意:直线的一般式方程能表示所有直线的方程,这是其他形式的方程所不具备的。直线的一般式方程成立的条件是A,B不同时为0。虽然直线的一般式有三个系数,但是只需两个独立的条件即可求直线的方程,若,则方程可化为; 若,则方程可化为,即;若,时,方程化为,它表示与轴平行或重合的直线;若,时,方程化为,它表示一条与轴平行或重合的直线;若时,则方程可化为 因此只需要两个条件即可。直线方程的其他形式都可以转化为一般式,因此在解题时若没有特殊说明,应把最后结果互为直线的一般式例11、设直线的方程为,根据下列条件分别确定m的值(1)在轴上的截距为 -3 (2)的斜率是 -1(6)点向式:问题:设直线经过点,是它的一个方向向量,求直线的方程解析:设是直线上的任意一点,则向量与共线,根据向量共线的充要条件,存在唯一实数,使,即,所以 ,方程组称为直线的参数式方程。如果直线与坐标轴不平行,则,于是可得,消去参数,得到直线的普通方程 这个方程称为直线的点向式方程,叫做直线的方向数。思考:若给出直线的一般式方程,如何确定直线的方向向量?(7)点法式:问题:设直线有法向量,且经过点,求直线的方程解析:设是直线上的任意一点,则有,即因为,所以有 这个方向是由直线上一点及直线的法向量确定的,称为直线的点法式。思考:若给出直线的一般式方程,如何确定直线的法向量?三、直线的位置关系(同一平面上的直线)1、平行与垂直(1)两条直线平行的判定当两条直线的斜率存在时,均可化成它的斜截式方程,所以以斜截式为例来研究直线平行的判定设两条直线分别为,: : 若,则的倾斜角相等,即由,可得,也即,此时;反之也成立。 所以有且当两条直线的斜率都不存在时,二者的倾斜角均为,若不重合,则它们也是平行直线注意:当不考虑斜率,即给出直线的一般式时,有如下结论:设两条直线分别为:,: 可得(其中分母不为0)或(可用直线的方向向量或法向量解释)例12、已知点和直线:,求过点A和直线平行的直线。(引出平行直线系方程)(2)两条直线垂直的判定当两条直线的斜率存在且不为0时,均可化成它的斜截式方程,所以以斜截式为例来研究直线平行的判定设两条直线分别为,: : 则得直线的方向向量为: 的方向向量为:,所以有即注意: 或用两条直线的倾斜角推倒:即,得到两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直。由得,两条直线垂直的判定就可叙述为:一般地,或一条斜率不存在,同时另一条斜率等于零。注意:当不考虑斜率,即给出直线的一般式时,有如下结论:设两条直线分别为:,: 可得例13、求与直线垂直且过点(1,2)的直线方程(引出垂直直线系方程)例14、已知两直线:,: ,当为何值时,直线与:平行 重合 垂直例15、已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标例16、求证:不论为取什么实数,直线总通过某一定点例17、已知直线,(1)若时,恒成立,求的取值范围;(2)若时,恒有,求的取值范围四、到角、夹角(1)到角公式定义:两条直线和相交构成四个角,他们是两对对顶角,为了区别这些角,我们把直线绕交点按逆时针方向旋转到与重合时所转的角,叫做到的角,如图,直线到的角是, 到的角是推倒:设已知直线方程分别是: :.到的角是 若,即,那么 若,设、的倾斜角分别为,则由图1)的,所以由图2)的,所以于是即 就是到的角的正切值,简称为到角公式(2)夹角公式定义:由(1)得,到的角是,所以当与相交但不垂直时,在和中有且只有一个角是锐角,我们把其中的锐角叫做两条直线的夹角,记夹角为,则,即为夹角公式当直线时,直线与的夹角为例18、等腰三角形一腰所在直线的方程是,底边所在直线的方程是,点在另一腰上,求这条腰所在直线的方程五、两条直线的交点坐标:1、设两条直线分别为:,: 则与是否有交点,只需看方程组是否有唯一解若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无穷多解,则两直线重合例19、求经过两直线和的交点且与直线平行的直线方程。经过两直线与交点的直线系方程为,其中是待定系数,在这个方程中,无论取什么实数,都得到,因此,它不能表示直线。2、对称问题(1)点关于点的对称,点A(a,b)关于的对称点B(m,n),则由中点坐标公式,即B() 。(2)点关于直线的对称,点关于直线(A、B不同时为0)的对称点,则有AA的中点在上且直线AA与已知直线垂直。(3)直线关于直线的对称,一般转化为点关于直线的对称解决,若已知直线与对称轴相交,则交点必在与对称的直线上,然后再求出上任意不同于交点的已知点关于对称轴对称的点,那么经过交点及点的直线就是;若直线与对称轴平行,则在上任取两不同点、,求其关于对称轴的对称点、,过、的直线就是。例题20、已知直线,试求点P(4,5)关于的对称坐标;直线关于直线的对称的直线方程。例题21、求函数的最小值。六、两点间的距离,点到直线间的距离(1)两点间的距离:已知则(2)点到直线的距离:已知点,直线(A、B不同时为0),求点到直线的距离。解法一:如图,作于点,设,若A,BO,则由,得,从而直线的方程为,解方程组得容易验证当A=0或B=0时,上式仍然成立。解法二:如图,设A0,B0,则直线与x轴和y轴都相交,过点分别作x轴和y轴的平行线,交直线于R和S,则直线的方程为,R的坐标为(-);直线的方程为,S的坐标为(-),于是有,。设,由三角形面积公式可得.于是得因此,点到直线的距离容易验证,当A=0或B=0时,上式仍成立。注意:若给出的方程不是一般式,则应先把方程化为一般式,再利用公式求距离;点到直线的距离是点到直线上的点的最短距离;若点在直线上,则点到直线的距离为0,但距离公式仍然成立,因为此时。(3)两平行线间的距离。定义;两条平行直线间的距离是指夹在两条平行直线间公垂线段的长,即一条直线上的点到另一条直线的距离。两条平行直线与的距离公式推导过程:设为直线上任意一点,则到的距离为,又因为在上,所以,即,所以。注意:应用此公式时,要把两直线化为一般式,且x、y的系数分别相等。例题22、求经过点A(-1,2)与B()的直线上一点C(5,n)到直线的距离。例题23、求经过点A(1,2)且到原点的距离等于1 的直线方程。例题24、已知三角形ABC中,点A(1,1),B(m,)(1m4),C(4,2),求m为何值时三角形面积最大。例题25、求过点P(1,2)且与A(2,3),B(4,-5)两点距离相等的直线方程。作业:1、设,则直线的倾斜角为( ) 2、设P(x,y)是曲线C:上任意一点,则的取值范围是( )A B C D3、已知M(2,3),N(3,2),直线l过点A(1,1)且与线段MN相交,则直线l的斜率k的取值范围是A.k或k4B.4kC.k4D.k44过点P(6,2)且在x轴上的截距比在y轴上的截距大1的直线的方程是ABC D5、若直线l经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l的条数为 (A)1 (B)2 (C)3 (D)46、如图所示,直线l1:axyb=0与l2:bxya=0(ab0,ab)的图象只可能是( ) 7、若三点A(3,a)、B(2,3)、C(4,b)在一条直线上,则有 ( )(A)a=3,b=5 (B)b=a+1 (C)2ab=3 (D)a2b=38、直线经过原点和点(1,1),则它的倾斜角是 a A. B. C.或 D.9.已知直线:A1x+B1y+C10与直线:A2x+B2y+C20相交,则方程1(A1xB1yC1)2(A2x+B2y+C2)=0,(0)表示 ( ) A.过与交点的一切直线 B.过与的交点,但不包括可包括的一切直线C.过与的交点,但包括不包括的一切直线 D.过与的交点,但既不包括又不包括的一切直线10.方程(a1)xy+2a+1=0(aR)所表示的直线 ( ) A.恒过定点(2,3) B.恒过定点(2,3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河南-河南图书资料员一级(高级技师)历年参考题库典型考点含答案解析
- 2024版承包出租房合同
- 2025年事业单位工勤技能-河北-河北水工监测工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江苏-江苏水利机械运行维护工二级(技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-新疆-新疆护理员一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西机械热加工五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西堤灌维护工五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东经济岗位工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-安徽-安徽计算机文字录入处理员一级(高级技师)历年参考题库典型考点含答案解析
- 2025年中级卫生职称-主治医师-急诊医学(中级)代码:392历年参考题库典型考点含答案解析
- 北京市《配电室安全管理规范》(DB11T 527-2021)地方标准
- 【开学第一课】七年级新生主题班会:踏上青春路 启航正当时 课件
- 2024年广东省佛山市投资促进中心招聘历年【重点基础提升】模拟试题(共500题)附带答案详解
- 快递驿站转让协议范本合同范本
- 绿盟科技2023年4月合作伙伴NSSP-Service认证附有答案
- QC/T 388-2023 碗形塞片 (正式版)
- 《小古文100篇》上册
- 2024年(基桩低应变反射波法)检测及试验技能与理论知识考试题库与答案
- 出租车过户委托书
- 中国老年糖尿病诊疗指南(2024版)解读
- 《个案研究法》课件
评论
0/150
提交评论