分式的复习[3].ppt_第1页
分式的复习[3].ppt_第2页
分式的复习[3].ppt_第3页
分式的复习[3].ppt_第4页
分式的复习[3].ppt_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分式复习三 2 解分式方程的一般步骤 1 在方程的两边都乘以最简公分母 约去分母 化成整式方程 2 解这个整式方程 3 把整式方程的根代入最简公分母 看结果是不是为零 使最简公分母为零的根是原分式方程的增根 必须舍去 4 写出原方程的根 1 解分式方程的思路是 分式方程 整式方程 去分母 复习回顾一 1 98西安 解方程 解 原方程可化为 两边都乘以 并整理得 解得 检验 x 1是原方程的根 x 2是增根 原方程的根是x 1 例1 1 若方程有增根 则增根应是 2 解关于x的方程产生增根 则常数a 一 练习 二 解方程 例2已知求A B 列分式方程解应用题的一般步骤 1 审 分析题意 找出研究对象 建立等量关系 2 设 选择恰当的未知数 注意单位 3 列 根据等量关系正确列出方程 4 解 认真仔细 5 验 不要忘记检验 6 答 不要忘记写 复习回顾二 例1 一项工程 需要在规定日期内完成 如果甲队独做 恰好如期完成 如果乙队独做 就要超过规定3天 现在由甲 乙两队合作2天 剩下的由乙队独做 也刚好在规定日期内完成 问规定日期是几天 解 设规定日期为x天 根据题意列方程 方程两边同时乘以x x 3 得2 x 3 x2 x x 3 解得x 6经检验 x 6是原分式方程的解且符合实际 答 规定日期为6天 例2 已知轮船在静水中每小时行20千米 如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同 那么此江水每小时的流速是多少千米 解 设江水每小时的流速是x千米 根据题意列方程 请完成下面的过程 例3 某人骑自行车比步行每小时多走8千米 如果他步行12千米所用时间与骑车行36千米所用的时间相等 求他步行40千米用多少小时 解 设他步行1千米用x小时 根据题意列方程 请完成下面的过程 例4 甲乙两人分别从相距36千米的A B两地相向而行 甲从A出发到1千米时发现有东西遗忘在A地 立即返回 取过东西后又立即从A向B行进 这样两人恰好在AB中点处相遇 已知甲比乙每小时多走0 5千米 求二人的速度各是多少 分析 等量关系t甲 t乙 x 18 思考题 1 水池装有两个进水管 单独开甲管需a小时注满空池 单独开乙管需b小时注满空池 若同时打开两管 那么注满空池的时间是 小时A B C D 学以致用 B 2 A地在河的上游 B地在河的下游 若船从A地开往B地的速度为V1 从B地返回A地的速度为V2 则A B两地间往返一次的平均速度为 A B C D 无法计算 B 3 甲加工180个零件所用的时间 乙可以加工240个零件 已知甲每小时比乙少加工5个零件 求两人每小时各加工的零件个数 甲 15乙 20 解 设甲每小时加工x个零件 则乙每小时加工 x 5 个零件 依题意得 请完成下面的过程 4 A B两地相距135千米 有大 小两辆汽车从A地开往B地 大汽车比小汽车早出发5小时 小汽车比大汽车晚到30分钟 已知大 小汽车速度的比为2 5 求两辆汽车的速度 大 18千米 时小 4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论