



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 时 计 划课题7.6 二元一次方程与一次函数(1)教 学目 标1、 初步理解二元一次方程与一次函数的关系;2、 掌握二元一次方程组和对应的两条直线之间的联系;3、 掌握二元一次方程组的图像解法重点1、二元一次方程与一次函数的关系;2、二元一次方程组和对应的两条直线的关系难点数形结合和数学转化的思想意识教学器材多媒体平台教 学过程一、情景引入(5分钟)1方程x+y=5的解有多少个?是这个方程的解吗?2点(0,5),(5,0),(2,3)在一次函数y的图像上吗?3在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?4以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系二、新课探究(10分钟)1解方程组2上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像3方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组意图:通过自主探索,使学生初步体会“数”(二元一次方程)与“形”(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础三、典型例题(12分钟)例1 用作图像的方法解方程组 例2 如图,直线与的交点坐标是 意图:设计例1进一步揭示“数”的问题可以转化成“形”来处理,但所求解为近似解通过例2,让学生深刻感受到由“形”来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把“形”的问题转化成“数”来处理这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫四、随堂练习(10分钟)2、意图:2个练习,意在及时检测学生对本节知识的掌握情况 五、课堂小结(3分钟)1二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程2方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法 要强调的是由于作图的不准确性,由图像法求得的解是近似解意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用六、作业布置板书设计(体育写运动生理曲线)7.6 二元一次方程与一次函数(一)解二元一次方程组的方法有3种:(1)代入消元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳航空考试题目及答案
- 三甲医院住院医师规范化培训全科师资培训考试题及答案
- 2025年航天质量知识试题及答案
- 维修电工考级考证试题题库及答案
- 2025年风机检修培训试题及答案
- 安全用电考试题及答案
- smt基础知识考试试题及答案
- 跨国企业劳动合同制定与海外员工权益保障合同
- 高新技术研发项目资金拨付合同
- 2025公务员省考面试题及答案
- 2024全国司法考试真题
- 罗伊模式在肿瘤个案护理中的应用
- 乡镇综合执法工作培训
- 2025新会计法培训
- 小儿麻醉危机管理方案
- 成人床旁心电监护护理规程
- 本科生科研管理制度
- 大输液产品研究报告
- 2025版技术服务合同协议
- GB 5768.1-2025道路交通标志和标线第1部分:总则
- 江西红色文化考试试题及答案
评论
0/150
提交评论