




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
十字相乘法进行因式分解 【基础知识精讲】(1)理解二次三项式的意义;(2)理解十字相乘法的根据;(3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法【重点难点解析】1二次三项式多项式,称为字母x的二次三项式,其中称为二次项,bx为一次项,c为常数项例如,和都是关于x的二次三项式在多项式中,如果把y看作常数,就是关于x的二次三项式;如果把x看作常数,就是关于y的二次三项式在多项式中,把ab看作一个整体,即,就是关于ab的二次三项式同样,多项式,把xy看作一个整体,就是关于xy的二次三项式十字相乘法是适用于二次三项式的因式分解的方法2十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(axb)(cxd)竖式乘法法则它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q分解成两个因数a,b的积,并且ab为一次项系数p,那么它就可以运用公式分解因式这种方法的特征是“拆常数项,凑一次项”公式中的x可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同(2)对于二次项系数不是1的二次三项式(a,b,c都是整数且a0)来说,如果存在四个整数,使,且,那么它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定学习时要注意符号的规律为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母如:3因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法对于一个还能继续分解的多项式因式仍然用这一步骤反复进行以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”【典型热点考题】例1 把下列各式分解因式:(1);(2)点悟:(1)常数项15可分为3 (5),且3(5)2恰为一次项系数;(2)将y看作常数,转化为关于x的二次三项式,常数项可分为(2y)(3y),而(2y)(3y)(5y)恰为一次项系数解:(1);(2)例2 把下列各式分解因式:(1);(2)点悟:我们要把多项式分解成形如的形式,这里,而解:(1);(2)点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性例3 把下列各式分解因式:(1);(2);(3)点悟:(1)把看作一整体,从而转化为关于的二次三项式;(2)提取公因式(xy)后,原式可转化为关于(xy)的二次三项式;(3)以为整体,转化为关于的二次三项式解:(1) (x1)(x1)(x3)(x3)(2) (xy)(xy)17(xy)2(xy)(xy1)(7x7y2)(3) 点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止因式分解之十字相乘法专项练习题(1) a27a+6; (2)8x2+6x35;(3)18x221x+5; (4) 209y20y2;(5)2x2+3x+1; (6)2y2+y6;(7)6x213x+6; (8)3a27a6;(9)6x211x+3; (10)4m2+8m+3;(11)10x221x+2; (12)8m222m+15;(13)4n2+4n15; (14)6a2+a35;(15)5x28x13; (16)4x2+15x+9;(17)15x2+x2; (18)6y2+19y+10;(19) 2(a+b) 2+(a+b)(ab)6(ab) 2; (20)7(x1) 2+4(x1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑规划设计合同协议
- 宅基地房屋转让合同(标准版)
- 雇佣薪资合同(标准版)
- 河南电力医院社会化招聘考试真题2024
- 上海电机学院招聘考试真题2024
- 难点解析人教版八年级物理上册第6章质量与密度-质量章节测试试卷(含答案详解版)
- 公差配合与测量技术 课件 项目4-6 零件的形位公差、零件表面粗糙度、特殊零件的检测
- 浙江省2025金属非金属矿山主要负责人和安全生成管理人员考试冲刺试题及答案
- 2025年勘察设计注册环保工程师考试(物理污染控制专业案例)测试题及答案
- 2025年安徽省建筑施工企业“安管人员”培训考试建筑施工企业自测试题及答案解析
- 粮食烘干合同
- 判别分析 多元统计分析课件(人大何晓群)
- 作文方格纸400字
- 吉林大学 人工智能原理 下
- 缺血性心肌病患者恶性心律失常及心源性猝死的相关因素分析
- 身份证地区对应码表
- 鲜食玉米产业园建设项目建议书
- 2023年北京高考作文备考:二元话题作文赏析“品德与文化”
- 汽车4S店维修结算清单
- 《LNG操作手册》(完整版)资料
- LY/T 2459-2015枫香培育技术规程
评论
0/150
提交评论