初中数学一元一次方程解应用题组卷.doc_第1页
初中数学一元一次方程解应用题组卷.doc_第2页
初中数学一元一次方程解应用题组卷.doc_第3页
初中数学一元一次方程解应用题组卷.doc_第4页
初中数学一元一次方程解应用题组卷.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.一元一次方程解应用题一选择题(共5小题,满分15分,每小题3分)1(3分)若关于x的方程mxm2m+3=0是一元一次方程,则这个方程的解是()Ax=0Bx=3Cx=3Dx=22(3分)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:40m+10=43m1;40m+10=43m+1,其中正确的是()ABCD3(3分)如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有()次平行于ABA1B2C3D44(3分)某车间28名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓12个或螺母18个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母依题意列方程应为()A12x=18(28x)B212x=18(28x)C1218x=18(28x)D12x=218(28x)5(3分)王华把400元存入银行,年利率为6.66%,到期时王华得到利息133.20元,她一共存了()A6年B5年C4年D3年二填空题(共5小题,满分15分,每小题3分)6(3分)若关于x的一元一次方程ax+b5=0的解为x=2,则4a2+b2+4ab2ab+3的值为7(3分)将一种浓度为15%的溶液30kg,配制成浓度不低于20%的同种溶液,则至少需要浓度为35%的该种溶液kg8(3分)2008年7月1日是星期二,那么2008年7月16日是星期9(3分)3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:10(3分)方程x+=2009的解是x=三解答题(共20小题,每小题6分)11某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?12某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成你认为选择哪种方案获利最多?为什么?13目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?14昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米求甲、乙两车的速度15某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%(1)求这款空调每台的进价?(利润率=)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?16某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算)()若某人乘坐了2千米的路程,则他应支付的费用为元;若乘坐了4千米的路程,则应支付的费用为元;若乘坐了8千米的路程,则应支付的费用为元;()若某人乘坐了x(x5且为整数)千米的路程,则应支付的费用为元(用含x的代数式表示);()若某人乘车付了15元的车费,且他所乘路程的千米数位整数,那么请你算一算他乘了多少千米的路程?17学校准备添置一批课桌椅,原计划订购60套,每套100元店方表示:如果多购可以优惠结果校方购了72套,每套减价3元,但商店获得同样多的利润求每套课桌椅的成本18我国邮政部门规定:国内平信100克以内(包括100克)每20克需贴邮票0.80元,不足20克重的以20克计算;超过100克的,超过部分每100克需加贴2.00元,不足100克的以100克计算(1)寄一封重41克的国内平信,需贴邮票多少元?(2)某人寄一封国内平信贴了6.00元邮票,此信重约多少克?(3)有9人参加一次数学竞赛,每份答卷重14克,每个信封重5克,将这9份答卷分装两个信封寄出,怎样装才能使所贴邮票金额最少?19有一旅客带了30千克的行李乘飞机按民航规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%支付行李费,现该旅客支付了120元的行李费,求他的飞机票价为多少元20将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?21某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的,求原来每个车间的人数22某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?23甲、乙两个工程队修筑一段长为300米的公路,如果甲、乙两队从公路两端相向施工,已知乙工程队修筑的公路比甲工程队修筑的公路的2倍少20米,求该工程完工后甲、乙两个工程队分别修筑了多少米公路?24小明每天早上要在7:50之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文课本,于是爸爸立即以180米/分的速度去追小明,并且在途中追上了他(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?25甲、乙两车站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km(1)两车同时开出,相向而行,多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30分钟,两车相向而行,慢车行驶多少小时两车相遇?26一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?若能,火车的长度是多少?若不能,请说明理由27市实验中学学生步行到郊外旅行高一(1)班学生组成前队,步行速度为4千米/时,高一(2)班学生组成后队,速度为6千米/时前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距2千米?28如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动设运动时间为t秒(t0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?29已知数轴上两点A,B对应的数分别为1,3,P为数轴上的动点,其对应的数为x(1)若点P到A,B两点的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到A,B的距离之和为5?若存在,请求出x的值;若不存在,请说明理由;(3)当点P以每分钟1个单位长的速度从原点O向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后点P到A,B两点的距离相等?30有若干张小长方形的纸片,已知小长方形纸片的长和宽的和等于6cm茗茗用6张这样的纸片拼出了如图1所示的大长方形;墨墨用4张这样的纸片拼出了如图2所示的大正方形求:(1)茗茗所拼大长方形的周长; (2)墨墨所拼大正方形中间小正方形的面积2016年11月27日小北的初中数学一元一次方程解应用题组卷参考答案与试题解析一选择题(共5小题,满分15分,每小题3分)1(3分)(2015秋巴南区期末)若关于x的方程mxm2m+3=0是一元一次方程,则这个方程的解是()Ax=0Bx=3Cx=3Dx=2【考点】一元一次方程的定义菁优网版权所有【专题】计算题【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a0),高于一次的项系数是0【解答】解:由一元一次方程的特点得m2=1,即m=3,则这个方程是3x=0,解得:x=0故选:A【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点2(3分)(2015秋鞍山期末)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:40m+10=43m1;40m+10=43m+1,其中正确的是()ABCD【考点】由实际问题抽象出一元一次方程菁优网版权所有【专题】应用题【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案【解答】解:根据总人数列方程,应是40m+10=43m+1,错误,正确;根据客车数列方程,应该为,错误,正确;所以正确的是故选D【点评】此题的关键是能够根据不同的等量关系列方程3(3分)(2012松山区校级模拟)如图,在矩形ABCD中,AB=4cm,AD=12cm,P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有()次平行于ABA1B2C3D4【考点】一元一次方程的应用菁优网版权所有【专题】几何动点问题;压轴题【分析】易得两点运动的时间为12s,PQAB,那么四边形ABQP是平行四边形,则AP=BQ,列式可求得一次平行,算出Q在BC上往返运动的次数可得平行的次数【解答】解:矩形ABCD,AD=12cm,AD=BC=12cm,PQAB,APBQ,四边形ABQP是平行四边形,AP=BQ,Q走完BC一次就可以得到一次平行,P的速度是1cm/秒,两点运动的时间为121=12s,Q运动的路程为124=48cm,在BC上运动的次数为4812=4次,线段PQ有4次平行于AB,故选D【点评】解决本题的关键是理解平行的次数就是Q在BC上往返运动的次数4(3分)某车间28名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓12个或螺母18个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母依题意列方程应为()A12x=18(28x)B212x=18(28x)C1218x=18(28x)D12x=218(28x)【考点】由实际问题抽象出一元一次方程菁优网版权所有【专题】工程问题【分析】螺栓与螺母个数比为1:2刚好配套,那么螺母的个数较多,要想让螺栓的个数和螺母的个数相等,等量关系为:2生产的螺栓的个数=螺母的个数,把相关数值代入即可【解答】解:有x名工人生产螺栓,有(28x)名工人生产螺母,每人每天平均生产螺栓12个或螺母18个,螺栓有12x,螺母有18(28x)个,故方程为212x=18(28x),故选B【点评】考查用一元一次方程解决工程问题,得到螺栓和螺母数量的等量关系是解决本题的关键5(3分)王华把400元存入银行,年利率为6.66%,到期时王华得到利息133.20元,她一共存了()A6年B5年C4年D3年【考点】一元一次方程的应用菁优网版权所有【分析】先利用公式:利息=本金利率时间,求出时间即可【解答】解:设一共存了x年,由题意得:4006.66%x=133.20,解得x=5,故选B【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解二填空题(共5小题,满分15分,每小题3分)6(3分)若关于x的一元一次方程ax+b5=0的解为x=2,则4a2+b2+4ab2ab+3的值为23【考点】一元一次方程的解菁优网版权所有【分析】把x=2代入方程,得:2a+b5=0,即2a+b=5,然后把所求的式子利用2a+b表示出来,代入求解即可【解答】解:把x=2代入方程,得:2a+b5=0,即2a+b=5,则原式=(2a+b)2(2a+b)+3=255+3=23故答案是:23【点评】本题考查了方程的解的定义以及完全平方式,正确对所求的式子进行变形是关键7(3分)(2009达州)将一种浓度为15%的溶液30kg,配制成浓度不低于20%的同种溶液,则至少需要浓度为35%的该种溶液10kg【考点】一元一次方程的应用菁优网版权所有【专题】应用题;溶液问题【分析】根据题意建立等量关系,x35%+3015%=(x+30)20%【解答】解:设35%溶液为x则得:35%x+3015%=(x+30)20%解得x=10kg,故至少需要35%的溶液10kg【点评】本题的关键是利用配制前与配制后的溶质相同列出方程计算8(3分)(2008哈尔滨)2008年7月1日是星期二,那么2008年7月16日是星期三【考点】一元一次方程的应用菁优网版权所有【专题】数字问题【分析】根据题意,7月1日到7月16日相差15天每周7天【解答】解:7月1日和7月16日相差161=15天,157=21则2008年7月16日是星期三【点评】根据一周是7天判断相差的天数除以7之后的余数,进一步得到是星期几即可9(3分)3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:4x+6=3(x+6)【考点】由实际问题抽象出一元一次方程菁优网版权所有【专题】年龄问题【分析】应先根据3年前儿子的年龄表示出3年前父亲的年龄,进而根据3年后父亲的年龄是儿子年龄的3倍列出方程即可【解答】解:3年前,父亲的年龄是儿子年龄的4倍,3年前儿子年龄为x岁,3年前父亲的年龄为4x岁,3年后父亲的年龄是儿子年龄的3倍,4x+6=3(x+6),解得:x=12,4x=48,即今年儿子的年龄为12+3=15岁,父亲的年龄,48+3=51岁故答案为:4x+6=3(x+6)【点评】本题考查用一元一次方程解决年龄问题,得到3年后父子两人年龄的等量关系是解决本题的关键10(3分)(2011浙江校级自主招生)方程x+=2009的解是x=1005【考点】解一元一次方程菁优网版权所有【专题】规律型【分析】本题将原方程变形,将大部分系数消掉,便可解答【解答】解:原方程可化为:=2009;即;提取公因式,得;化简得:2x(1)=2009;解得:x=1005【点评】本题难度极大,需要很强的计算能力和创造性思维能力要注意寻找规律(=,=)三解答题(共20小题)11(2016商河县二模)某中学组织七年级学生参观,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满试问:(1)七年级学生人数是多少?(2)原计划租用45座客车多少辆?【考点】一元一次方程的应用菁优网版权所有【专题】应用题;工程问题【分析】此题注意总人数是不变的,租用客车数也不变,设七年级人数是x人,客车数为,也可表示为,列方程即可解得【解答】解:(1)设七年级人数是x人,根据题意得,解得:x=240(2)原计划租用45座客车:(24015)45=5(辆)故七年级学生人数是240人,原计划租用45座客车5辆【点评】此题要抓住不变量,可以有不同的解法,锻炼了学生的分析能力与一题多解的能力12(2016惠安县模拟)某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成你认为选择哪种方案获利最多?为什么?【考点】一元一次方程的应用菁优网版权所有【专题】应用题【分析】方案一:根据制成奶片每天可加工1吨,求出4天加工的吨数,剩下的直接销售鲜牛奶,求出利润;方案二:设生产x天奶片,(4x)天酸奶,根据题意列出方程,求出方程的解得到x的值,进而求出利润,比较即可得到结果【解答】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:42000+(84)500=10000(元);方案二:设生产x天奶片,则生产(4x)天酸奶,根据题意得:x+3(4x)=8,解得:x=2,2天生产酸奶加工的鲜奶是23=6吨,则利润为:22000+231200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键13(2016博白县一模)目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?【考点】一元一次方程的应用菁优网版权所有【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200x)只,由题意可得等量关系:甲型的进货款+乙型的进货款=46000元,根据等量关系列出方程,再解方程即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200a)只,由题意可得:甲型的总利润+乙型的总利润=总进货款30%,根据等量关系列出方程,再解即可【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200x)只,由题意,得:25x+45(1200x)=46000,解得:x=400购进乙型节能灯1200400=800(只),答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200a)只,由题意,得:(3025)a+(6045)(1200a)=25a+45(1200a)30%解得:a=450购进乙型节能灯1200450=750只5 a+15(1200a)=13500元答:商场购进甲型节能灯450只,购进乙型节能灯750只时利润为13500元【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程14(2016云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米求甲、乙两车的速度【考点】一元一次方程的应用菁优网版权所有【分析】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x的值即可【解答】解:设乙车速度为x千米/时,甲车速度为(x+20)千米/时,根据题意得40分钟=小时,(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106答:甲车速度为106千米/时,乙车速度为86千米/时【点评】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度时间公式列出一元一次方程,此题难度不大15(2016潮南区模拟)某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%(1)求这款空调每台的进价?(利润率=)(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【考点】一元一次方程的应用菁优网版权所有【分析】(1)利用利润率=这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可【解答】解:(1)设这款空调每台的进价为x元,根据题意得:32700.8x=9%x,解得:x=2400,答:这款空调每台的进价为2400元;(2)商场销售这款空调机100台的盈利为:10024009%=21600(元),答:商场销售了这款空调机100台,盈利21600元【点评】本题考查了一元一次方程的应用,解题的关键是了解利润率的求法16(2016天津二模)某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算)()若某人乘坐了2千米的路程,则他应支付的费用为10元;若乘坐了4千米的路程,则应支付的费用为11.3元;若乘坐了8千米的路程,则应支付的费用为19.8元;()若某人乘坐了x(x5且为整数)千米的路程,则应支付的费用为2.4x+0.6或12.6+2.4(x5)元(用含x的代数式表示);()若某人乘车付了15元的车费,且他所乘路程的千米数位整数,那么请你算一算他乘了多少千米的路程?【考点】一元一次方程的应用菁优网版权所有【分析】()分别利用乘车收费标准求出不同路程的乘车费用;()利用某人乘坐了x(x5且为整数)千米的路程,进而利用乘车收费标准得出答案;()首先求出此人乘车的路程超过5千米,进而利用()所求得出等式求出答案【解答】解:()由题意可得:某人乘坐了2千米的路程,他应支付的费用为:10元;乘坐了4千米的路程,应支付的费用为:10+(43)1.3=11.3(元),乘坐了8千米的路程,应支付的费用为:10+21.3+32.4=19.8(元),故答案为:10;11.3,19.8; ()由题意可得:10+1.32+2.4(x5)=2.4x+0.6;故答案为:2.4x+0.6或12.6+2.4(x5)()若走5千米,则应付车费:10+1.32=12.6(元),12.615,此人乘车的路程超过5千米,因此,由()得2.4x+0.6=15,解得:x=6 答:此人乘车的路程为6千米【点评】此题主要考查了一元一次方程的应用,根据题意得出超过5km乘车费用的关系式是解题关键17(2016春晋江市期中)学校准备添置一批课桌椅,原计划订购60套,每套100元店方表示:如果多购可以优惠结果校方购了72套,每套减价3元,但商店获得同样多的利润求每套课桌椅的成本【考点】一元一次方程的应用菁优网版权所有【专题】计算题;经济问题【分析】每套利润套数=总利润,在本题中有两种方案,虽然单价不同,但是总利润相等,可依此列方程解应用题【解答】解:设每套课桌椅的成本x元则:60(100x)=72(1003x)解之得:x=82答:每套课桌椅成本82元【点评】列方程解应用题,重点在于准确地找出相等关系,这是列方程的依据此题主要考查了一元一次方程的解法18(2016秋南安市期中)我国邮政部门规定:国内平信100克以内(包括100克)每20克需贴邮票0.80元,不足20克重的以20克计算;超过100克的,超过部分每100克需加贴2.00元,不足100克的以100克计算(1)寄一封重41克的国内平信,需贴邮票多少元?(2)某人寄一封国内平信贴了6.00元邮票,此信重约多少克?(3)有9人参加一次数学竞赛,每份答卷重14克,每个信封重5克,将这9份答卷分装两个信封寄出,怎样装才能使所贴邮票金额最少?【考点】一元一次方程的应用菁优网版权所有【专题】应用题;方案型【分析】(1)41克不足100克,应按3个20克的质量付邮费(2)100克的平信邮费是4元,200克的物品邮费应是6元就可以判断平信的质量(3)9份答卷以及两个信封总计136克,分成两个小于或等于100克的信封比较省钱【解答】解:(1)41克在100克以内,应贴2.4元的邮票(2)信的质量应大于100克,小于或等于200克(3)9份答卷以及两个信封总计136克,因而把它分成两个小于或等于100克的信封比较省钱设其中一个信封装x份答卷,则另一信封装(9x)份答卷则第一个信封的质量是:14x+5100;另一个信封的质量是:14(9x)+5100,解这两个不等式组成的不等式组,得:2.3x6.1则x=3或4或5或6共四种情况一个信封装3份答卷,另一个信封装6份答卷,或一个装4份,另一个装5份最省答:41克在100克以内,应贴2.4元的邮票;某人寄封国内平信贴了6.00元邮票,此信质量应大于100克,小于或等于200克;比较省钱的做法是:一个信封装3份答卷,另一个信封装6份答卷,或一个装4份,另一个装5份【点评】解决本题的关键是能够正确确定未知数x的范围,然后分情况进行讨论19(2016春原阳县校级月考)有一旅客带了30千克的行李乘飞机按民航规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%支付行李费,现该旅客支付了120元的行李费,求他的飞机票价为多少元【考点】一元一次方程的应用菁优网版权所有【专题】应用题【分析】设他的飞机票价为x元,根据题意列出方程,求出方程的解即可得到结果【解答】解:设他的飞机票价为x元,根据题意得:(3020)1.5%x=120,整理得:0.15x=120,解得:x=800,则他的飞机票为800元【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键20(2015秋古田县校级期末)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?【考点】一元一次方程的应用菁优网版权所有【分析】由题意可知鸡与笼的总数是不变的,由此可得两个等量关系式:即每笼放4只时,笼中鸡的总数+1=鸡的总数;当笼中放5只鸡时,(笼的总数1)5=鸡的总数【解答】解:设笼的总数为x个则4x+1=5(x1),解得x=6,4x+1=25答:鸡的总数为25只,共有6个笼【点评】此题考查了一元一次方程的应用,解题的关键是弄清鸡与笼之间的关系,从而列出方程,难度不大21(2016春大同期末)某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调10人到第一车间,那么第一车间人数就是第二车间人数的,求原来每个车间的人数【考点】一元一次方程的应用菁优网版权所有【专题】应用题【分析】设原来第二车间有x人,则第一车间的人数为x30,等量关系为:调后第一车间人数就是第二车间人数的,列方程求解即可【解答】解:设原来第二车间有x人,由题意得x30+10=(x10),解得:x=250,则25030=170(人)答:原来第一车间的人数为170人,第二车间的人数为250人【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解22(2016春孝义市月考)某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?【考点】一元一次方程的应用菁优网版权所有【专题】比例分配问题【分析】等量关系为:镜片数量=2镜架数量,把相关数值代入即可求解【解答】解:设x人生产镜片,则(60x)人生产镜架由题意得:200x=250(60x),解得x=20,60x=40答:20人生产镜片,40人生产镜架,才能使每天生产的产品配套【点评】解决本题的关键是得到镜片数量和镜架数量的等量关系23(2016春梅河口市校级月考)甲、乙两个工程队修筑一段长为300米的公路,如果甲、乙两队从公路两端相向施工,已知乙工程队修筑的公路比甲工程队修筑的公路的2倍少20米,求该工程完工后甲、乙两个工程队分别修筑了多少米公路?【考点】一元一次方程的应用菁优网版权所有【分析】设甲工程队修筑了x米公路,则乙工程队修了(2x20)米,根据“甲、乙两个工程队修筑一段长为300米的公路”列出方程并解答【解答】解:设甲工程队修筑了x米公路,依题意得:x+(2x20)=300,解得x=所以2x20=(米)答:甲工程队修筑了米公路,乙工程队修筑了米公路【点评】本题考查了一元一次方程的应用列一元一次方程解应用题的五个步骤:1审:仔细审题,确定已知量和未知量,找出它们之间的等量关系2设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数 3列:根据等量关系列出方程 4解:解方程,求得未知数的值 5答:检验未知数的值是否正确,是否符合题意,完整地写出答句24(2015秋双柏县期末)小明每天早上要在7:50之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文课本,于是爸爸立即以180米/分的速度去追小明,并且在途中追上了他(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?【考点】一元一次方程的应用菁优网版权所有【专题】应用题【分析】(1)设小明爸爸追上小明用了x分钟,由题意知小明比爸爸多走5分钟且找出等量关系,小明和他爸爸走的路程一样,由此等量关系列出方程求解;(2)根据题意,先求出小明此时已经行走的路程,然后求解即可【解答】解:(1)先设小明爸爸追上小明用了x分钟,那么小明走了(x+5)分钟,由题意得:80(x+5)=180x,解得:x=4,18041000米,所以,小明爸爸追上小明用了4分钟(2)小明此时已经行走的路程为:1804=720米,追上小明时,距离学校的距离为:1000720=280米【点评】本题考查一元一次方程的应用问题,关键在于弄清题意,找出等量关系即:小明爸爸和小明所行路程相等,列出方程求解25(2016春太康县月考)甲、乙两车站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km(1)两车同时开出,相向而行,多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30分钟,两车相向而行,慢车行驶多少小时两车相遇?【考点】一元一次方程的应用菁优网版权所有【分析】(1)设两车行驶了x小时相遇,则慢车走的路程为65xkm,快车走的路程为85xkm,根据慢车与快车的路程和为450km建立方程求出其解即可;(2)设两车行驶了x小时快车追上慢车,则慢车走的路程为65xkm,快车走的路程为85xkm,根据快车与慢车的路程差为450km建立方程求出其解即可;(3)设慢车行驶了x小时后两车相遇,则快车行驶了(0.5+x)小时,根据慢车与快车的路程和为450km建立方程求出其解即可【解答】解:(1)设两车行驶了x小时相遇,根据题意,得65x+85x=450,解得:x=3答:两车行驶了3小时相遇;(2)设两车行驶了x小时快车追上慢车,根据题意,得85x65x=450,解得:x=22.5答:22.5小时快车追上慢车;(3)设慢车行驶了x小时后两车相遇,根据题意,得65x+85(0.5+x)=450,解得:x=2答:慢车行驶了2小时后两车相遇【点评】本题考查了行程问题的数量关系在解实际问题中的运用,列一元一次方程解实际问题的运用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解26(2015秋埇桥区期末)一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?若能,火车的长度是多少?若不能,请说明理由【考点】一元一次方程的应用菁优网版权所有【分析】设火车的长度是x米,根据经过一条长300m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,可列方程求解【解答】解:设火车的长度是x米,=,解得x=300,火车的长度是300米【点评】本题考查理解题意的能力,通过隧道和灯光照射表示的什么意思,灯光照射的时间就是走火车的长度的时间,根据速度相等可列方程求解27(2015秋兴平市期末)市实验中学学生步行到郊外旅行高一(1)班学生组成前队,步行速度为4千米/时,高一(2)班学生组成后队,速度为6千米/时前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距2千米?【考点】一元一次方程的应用菁优网版权所有【专题】应用题;分类讨论【分析】(1)设后队追上前队需要x小时,根据后队比前队快的速度时间=前队比后队先走的路程可列出方程,解出即可得出时间;(2)先计算出联络员所走的时间,再由路程=速度时间即可得出联络员走的路程(3)要分两种情况讨论:当(2)班还没有超过(1)班时,相距2千米;当(2)班超过(1)班后,(1)班与(2)班再次相距2千米,分别列出方程,求解即可【解答】解:(1)设后队追上前队需要x小时,由题意得:(64)x=41解得:x=2;故后队追上前队需要2小时;(2)后队追上前队时间内,联络员走的路程就是在这2小时内所走的路,所以122=24答:后队追上前队时间内,联络员走的路程是24千米;(3)要分三种情况讨论:当(1)班出发半小时后,两队相距4=2(千米)当(2)班还没有超过(1)班时,相距2千米,设(2)班需y小时与(1)相距2千米,由题意得:(64)y=2,解得:y=1;所以当(2)班出发1小时后两队相距2千米;当(2)班超过(1)班后,(1)班与(2)班再次相距2千米时(64)y=4+2,解得:y=3答当(1)班出发半小时后,或者(2)班出发1小时后或3小时后,两队相距2千米【点评】此题考查了一元一次方程的应用,解答本题的关键是弄清追及问题中,每个运动因素所走的时间、路程、相对速度,难度较大28(2015秋惠城区期末)如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动设运动时间为t秒(t0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?【考点】一元一次方程的应用;数轴菁优网版权所有【分析】(1)根据点B对应的数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论