高考数学(理科)一轮复习椭圆学案带答案.doc_第1页
高考数学(理科)一轮复习椭圆学案带答案.doc_第2页
高考数学(理科)一轮复习椭圆学案带答案.doc_第3页
高考数学(理科)一轮复习椭圆学案带答案.doc_第4页
高考数学(理科)一轮复习椭圆学案带答案.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学(理科)一轮复习椭圆学案带答案 学案51 椭 圆导学目标: 1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义,几何图形、标准方程及其简单几何性质自主梳理 1椭圆的概念在平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做_这两定点叫做椭圆的_,两焦点间的距离叫_集合PM|MF1|MF2|2a,|F1F2|2c,其中a 0,c 0,且a,c为常数:(1)若_,则集合P为椭圆;(2)若_,则集合P为线段;(3)若_,则集合P为空集2椭圆的标准方程和几何性质标准方程x2a2y2b21(a b 0)y2a2x2b21(a b 0)图形 性质范围axabybbxbaya对称性对称轴:坐标轴 对称中心:原点顶点A1(a,0),A2(a,0)B1(0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|2c离心率eca(0,1)a,b,c的关系c2a2b2自我检测 1已知ABC的顶点B、C在椭圆x23y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是( )A23 B6 C43 D122(2011 揭阳调研)“m n 0”是方程“mx2ny21表示焦点在y轴上的椭圆”的( )A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分也不必要条件3已知椭圆x2sin y2cos 1 (0 2)的焦点在y轴上,则的取值范围是( )A.34, B.4,34C.2, D.2,344椭圆x212y231的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的( )A7倍 B5倍 C4倍 D3倍5(2011 开封模拟)椭圆5x2ky25的一个焦点是(0,2),那么k等于( )A1 B1 C.5 D5探究点一 椭圆的定义及应用例1 (教材改编)一动圆与已知圆O1:(x3)2y21外切,与圆O2:(x3)2y281内切,试求动圆圆心的轨迹方程变式迁移1 求过点A(2,0)且与圆x24xy2320内切的圆的圆心的轨迹方程探究点二 求椭圆的标准方程例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)经过两点A(0,2)和B12,3. 变式迁移2 (1)已知椭圆过(3,0),离心率e63,求椭圆的标准方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1)、P2(3,2),求椭圆的标准方程 探究点三 椭圆的几何性质例3 (2011 安阳模拟)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF260.(1)求椭圆离心率的范围;(2)求证:F1PF2的面积只与椭圆的短轴长有关 变式迁移3 已知椭圆x2a2y2b21(a b 0)的长、短轴端点分别为A、B,从此椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1,ABOM.(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求F1QF2的取值范围方程思想的应用例 (12分)(2011 北京朝阳区模拟)已知中心在原点,焦点在x轴上的椭圆C的离心率为12,且经过点M(1,32),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.(1)求椭圆C的方程;(2)是否存在直线l,满足PA PBPM2?若存在,求出直线l的方程;若不存在,请说明理由【答题模板】解 (1)设椭圆C的方程为x2a2y2b21(a b 0),由题意得1a294b21,ca12,a2b2c2.解得a24,b23.故椭圆C的方程为x24y231.4分(2)若存在直线l满足条件,由题意可设直线l的方程为yk(x2)1,由x24y231,yk x2 1,得(34k2)x28k(2k1)x16k216k80.6分因为直线l与椭圆C相交于不同的两点A,B,设A,B两点的坐标分别为(x1,y1),(x2,y2),所以8k(2k1)24 (34k2) (16k216k8) 0.整理得32(6k3) 0,解得k 12.7分又x1x28k 2k1 34k2,x1x216k216k834k2,且PA PBPM2,即(x12)(x22)(y11)(y21)54,所以(x12)(x22)(1k2)54,即x1x22(x1x2)4(1k2)54.9分所以16k216k834k228k 2k1 34k24(1k2)44k234k254,解得k12.11分所以k12.于是存在直线l满足条件,其方程为y12x.12分【突破思维障碍】直线与椭圆的位置关系主要是指公共点问题、相交弦问题及其他综合问题反映在代数上,就是直线与椭圆方程联立的方程组有无实数解及实数解的个数的问题,它体现了方程思想的应用,当直线与椭圆相交时,要注意判别式大于零这一隐含条件,它可以用来检验所求参数的值是否有意义,也可通过该不等式来求参数的范围对直线与椭圆的位置关系的考查往往结合平面向量进行求解,与向量相结合的题目,大都与共线、垂直和夹角有关,若能转化为向量的坐标运算往往更容易实现解题功能,所以在复习过程中要格外重视1求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参)当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为x2my2n1 (m 0,n 0且mn),可以避免讨论和繁杂的计算,也可以设为Ax2By21 (A 0,B 0且AB),这种形式在解题中更简便2椭圆的几何性质分为两类:一是与坐标轴无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;另一类是与坐标系有关的性质,如:顶点坐标,焦点坐标等第一类性质是常数,不因坐标系的变化而变化,第二类性质是随坐标系变化而相应改变3直线与椭圆的位置关系问题它是高考的热点,通常涉及椭圆的性质、最值的求法和直线的基础知识、线段的中点、弦长、垂直问题等,分析此类问题时,要充分利用数形结合法、设而不求法、弦长公式及根与系数的关系去解决(满分:75分)一、选择题(每小题5分,共25分)1(2011 温州模拟)若ABC的两个顶点坐标分别为A(4,0)、B(4,0),ABC的周长为18,则顶点C的轨迹方程为( )A.x225y291 (y0) B.y225x291 (y0)C.x216y291 (y0) D.y216x291 (y0)2已知椭圆x210my2m21,长轴在y轴上,若焦距为4,则m等于( )A4 B5 C7 D83已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若ABF2是等腰直角三角形,则这个椭圆的离心率是( )A.32 B.22 C.21 D.24(2011 天门期末)已知圆(x2)2y236的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )A圆 B椭圆C双曲线 D抛物线5椭圆x225y291上一点M到焦点F1的距离为2,N是MF1的中点,则|ON|等于( )A2 B4 C8 D.32二、填空题(每小题4分,共12分)6已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为_7(2011 唐山调研)椭圆x29y221的焦点为F1、F2,点P在椭圆上若|PF1|4,则|PF2|_;F1PF2的大小为_8.如图,已知点P是以F1、F2为焦点的椭圆x2a2y2b21 (a b 0)上一点,若PF1PF2,tanPF1F212,则此椭圆的离心率是_三、解答题(共38分)9(12分)已知方向向量为v(1,3)的直线l过点(0,23)和椭圆C:x2a2y2b21(a b 0)的右焦点,且椭圆的离心率为63.(1)求椭圆C的方程;(2)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且DMDN,求实数的取值范围 10(12分)(2011 烟台模拟)椭圆ax2by21与直线xy10相交于A,B两点,C是AB的中点,若|AB|22,OC的斜率为22,求椭圆的方程11(14分)(2010 福建)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由学案51 椭 圆自主梳理1椭圆 焦点 焦距 (1)a c (2)ac (3)a c自我检测1C 2.C 3.D 4.A 5.B课堂活动区例1 解 如图所示,设动圆的圆心为C,半径为r.则由圆相切的性质知,|CO1|1r,|CO2|9r,|CO1|CO2|10,而|O1O2|6,点C的轨迹是以O1、O2为焦点的椭圆,其中2a10,2c6,b4.动圆圆心的轨迹方程为x225y2161.变式迁移1 解 将圆的方程化为标准形式为:(x2)2y262,圆心B(2,0),r6.设动圆圆心M的坐标为(x,y),动圆与已知圆的切点为C.则|BC|MC|BM|,而|BC|6,|BM|CM|6.又|CM|AM|,|BM|AM|6 |AB|4.点M的轨迹是以点B(2,0)、A(2,0)为焦点、线段AB中点(0,0)为中心的椭圆a3,c2,b5.所求轨迹方程为x29y251.例2 解题导引 确定一个椭圆的标准方程,必须要有一个定位条件(即确定焦点的位置)和两个定形条件(即确定a,b的大小)当焦点的位置不确定时,应设椭圆的标准方程为x2a2y2b21 (a b 0)或y2a2x2b21 (a b 0),或者不必考虑焦点位置,直接设椭圆的方程为mx2ny21 (m 0,n 0,且mn)解 (1)若椭圆的焦点在x轴上,设方程为x2a2y2b21 (a b 0)椭圆过点A(3,0),9a21,a3,又2a3 2b,b1,方程为x29y21.若椭圆的焦点在y轴上,设方程为y2a2x2b21 (a b 0)椭圆过点A(3,0),9b21,b3,又2a3 2b,a9,方程为y281x291.综上可知椭圆的方程为x29y21或y281x291.(2)设经过两点A(0,2),B12,3的椭圆标准方程为mx2ny21,将A,B坐标代入方程得4n114m3n1 m1n14,所求椭圆方程为x2y241.变式迁移2 解 (1)当椭圆的焦点在x轴上时,a3,ca63,c6,从而b2a2c2963,椭圆的标准方程为x29y231.当椭圆的焦点在y轴上时,b3,ca63,a2b2a63,a227.椭圆的标准方程为x29y2271.所求椭圆的标准方程为x29y231或x29y2271.(2)设椭圆方程为mx2ny21 (m 0,n 0且mn)椭圆经过P1、P2点,P1、P2点坐标适合椭圆方程,则6mn1, 3m2n1, 两式联立,解得m19,n13.所求椭圆方程为x29y231.例3 解题导引 (1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|PF2|2a,得到a、c的关系(2)对F1PF2的处理方法定义式的平方余弦定理面积公式 |PF1|PF2| 2 2a 2,4c2|PF1|2|PF2|22|PF1|PF2|cos ,S12|PF1|PF2|sin .(1)解 设椭圆方程为x2a2y2b21 (a b 0),|PF1|m,|PF2|n.在PF1F2中,由余弦定理可知,4c2m2n22mncos 60.mn2a,m2n2(mn)22mn4a22mn.4c24a23mn,即3mn4a24c2.又mnmn22a2(当且仅当mn时取等号),4a24c23a2.c2a214,即e12.e的取值范围是12,1.(2)证明 由(1)知mn43b2,SPF1F212mnsin 6033b2,即PF1F2的面积只与短轴长有关变式迁移3 解 (1)F1(c,0),则xMc,yMb2a,kOMb2ac.kABba,OMAB,b2acba,bc,故eca22.(2)设|F1Q|r1,|F2Q|r2,F1QF2,r1r22a,|F1F2|2c,cos r21r224c22r1r2 r1r2 22r1r24c22r1r2a2r1r21a2 r1r22 210,当且仅当r1r2时,cos 0,0,2课后练习区1A 2.D 3.C 4.B 5.B6.x236y291 7.2 120 8.539解 (1)直线l的方向向量为v(1,3),直线l的斜率为k3.又直线l过点(0,23),直线l的方程为y233x.a b,椭圆的焦点为直线l与x轴的交点c2.又eca63,a6.b2a2c22.椭圆方程为x26y221.(6分)(2)若直线MNy轴,则M、N是椭圆的左、右顶点,3636或3636,即526或526.若MN与y轴不垂直,设直线MN的方程为xmy3(m0)由x26y221,xmy3得(m23)y26my30.设M、N坐标分别为(x1,y1),(x2,y2),则y1y26mm23,y1y23m23,36m212(m23)24m236 0,m2 32.DM(x13,y1),DN(x23,y2),DMDN,显然 0,且1,(x13,y1)(x23,y2)y1y2.代入,得112m2m2321036m23.m2 32,得2 1 10,即221 0,2101 0,解得526 526且1.综上所述,的取值范围是526526,且1.(12分)10解 方法一 设A(x1,y1)、B(x2,y2),代入椭圆方程并作差得a(x1x2)(x1x2)b(y1y2)(y1y2)0.而y1y2x1x21,y1y2x1x2kOC22,代入上式可得b2a.(4分)由方程组ax2by21xy10,得(ab)x22bxb10,x1x22bab,x1x2b1ab,再由|AB|1k2 |x2x1|2|x2x1|22,得2bab24 b1ab4,(8分)将b2a代入得a13,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论